In our previous study, we examined the effect of exogenous hydrogen peroxide, which causes a potent oxidative stress and has been demonstrated to be a potent apoptosis-inducer in many kinds of cells. We found that the addition of 1 or 10 mM hydrogen peroxide induced reactive oxygen species (ROS) formation, oxidative DNA damage, dysfunction of the mitochondrial membrane potential, and early apoptotic changes in the human osteosarcoma cell line HS-Os-1. We therefore concluded that intracellular ROS formation was involved in the hydrogen peroxide-induced apoptosis of HS-Os-1 cells. In contrast to the osteosarcoma cell line HS-Os-1, human peripheral T cells are considered to be easily susceptible to oxidative stress, because these cells lack peroxidase activity. Therefore, in this study, we investigated the site of ROS formation by utilizing MitoCapture, H2DCFDA (succinimidyl ester of dichloro-dihydrofluorescein diacetate), DAPI (4',6-diamidino-2-phenylindole), and LysoSensor. Our results showed that ROS formation was apparently diffusely distributed in T cells oxidatively stressed with 0.1 mM hydrogen peroxide. Moreover, lysosomal swelling and deformity, possibly revealing lysosomal membrane destabilization, were observed in these cells. Based on the above results, there exists an apoptotic cascade involving early lysosomal membrane destabilization in the hydrogen peroxide-induced apoptosis of human peripheral T cells. Therefore, the possible involvement of lysosomal protease leakage caused by hydroxyl radical formation in lysosomes (possibly resulting in mitochondrial membrane dysfunction) is considered to play an important role in hydrogen peroxide-induced T cell apoptosis.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFAdv Med Sci
January 2025
Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland; Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, Płock, Poland.
Purpose: Proper functioning of the endothelial barrier is crucial for cardiovascular system homeostasis. Oxidative stress can lead to endothelial dysfunction (ED), damaging lipids, proteins, and DNA. Reactive oxygen species also increase cytoplasmic Ca levels, activating transient receptor potential melastatin 2 (TRPM2), a membrane non-selective calcium channel.
View Article and Find Full Text PDFBull Exp Biol Med
December 2024
Hunan University of Chinese Medicine, Changsha, Hunan, China.
We studied the effect of acteoside on a model of human corneal epithelial cells (HCEC) injury induced by HO. HCEC were divided into 4 groups and cultured for 24 h in normal medium (intact and control groups, respectively), or in a medium containing DMSO or 160 μM acteoside (DMSO and acteoside groups, respectively). Then, HO solution was added to HCEC for 4 h, except for intact cells.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China. Electronic address:
Full-thickness skin wounds remian a significant and pressing challenge. In this study, we introduce a novel composite hydrogel, CS + GA + Zn-HA. This hydrogel is formulated by incorporating 1 % (1 g/100 mL) of bioactive Zinc-substituted hydroxyapatite nanoparticles (Zn-HA) and 0.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan, 8430070, China.
This study aimed to investigate the protective effect of a novel capsaicinoid glucoside (CG) against HO-induced oxidative stress in HepG2 cells and elucidate its underlying molecular mechanism. CG treatment significantly reduced HO-induced cell mortality and attenuated the production of lactate dehydrogenase and malondialdehyde in a dose-dependent manner. Moreover, CG drastically reduced the ROS levels 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!