This study's rationale was that the expression and activity of aspartate transporters in hypertrophied hearts might be different from normal hearts, which could affect the use of aspartate in myocardial protection of hypertrophied hearts. mRNA expression of system X(ag)(-) transporters in hearts from normal (Wistar Kyoto) and hypertrophied (spontaneously hypertensive rat) rats was investigated by RT-PCR. EAAT3 protein expression in isolated cells and vesicles from normal and hypertrophied hearts was investigated by Western blotting. The same vesicles were also used to measure aspartate uptake. The effects of 0.5 mmol l(-1) aspartate supplementation on cardiac performance during ischaemia-reperfusion were investigated in isolated and perfused hearts. Both normal and hypertrophied hearts expressed EAAT1 and EAAT3 mRNA. EAAT3 protein expression was significantly greater in cells and vesicles from hypertrophied hearts compared to normal hearts. The velocity (V(max)) of aspartate uptake was faster at 24.4 +/- 2.2 pmol mg(-1) s(-1) in vesicles from hypertrophied hearts compared to 8.2 +/- 0.8 pmol mg(-1) s(-1) (P < 0.001, t test, n= 6, means +/-s.e.m.) in normal heart vesicles. The affinity (K(m)) was similar for both preparations. When recoveries were matched, 0.5 mmol l(-1) aspartate addition reduced reperfusion injury and increased functional recovery of hypertrophied hearts but not normal hearts. This was associated with a greater preservation of ATP, glutamate and glutamine and less lactate production during ischaemia in aspartate-treated hypertrophied hearts compared to all other experimental groups. These results suggest that increased aspartate transporter expression and activity in hypertrophy helps facilitate aspartate entry into hypertrophied cardiomyocytes, which in turn leads to improved myocardial protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664986PMC
http://dx.doi.org/10.1113/jphysiol.2004.060616DOI Listing

Publication Analysis

Top Keywords

hypertrophied hearts
32
hearts normal
16
hearts
13
expression activity
12
normal hearts
12
hearts compared
12
hypertrophied
10
aspartate
9
aspartate transporter
8
transporter expression
8

Similar Publications

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is a high prevalence condition, with high rates of hospitalization and mortality. Arterial hypertension is the main risk factor for HFpEF. Among hypertensive patients, alterations in cardiac and vascular morphology identify hypertension-mediated organ damage (HMOD).

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.

View Article and Find Full Text PDF

Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway.

Eur J Pharmacol

January 2025

School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China. Electronic address:

Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications.

View Article and Find Full Text PDF

Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!