In bacteria, SsrA, a highly conserved RNA molecule, functions in a mechanism meant to rescue stalled ribosomes. In this process, a peptide tag encoded by SsrA is cotranslationally added to truncated polypeptides, thereby targeting these molecules for proteolytic degradation, at least when they stay inside the cell. This study examined the fate of two extracellular proteins that were tagged by the SsrA system of Bacillus subtilis. Gene constructs encoding human interleukin-3 (hIL-3) fused to a signal peptide and B. subtilis alpha-amylase, both lacking an in-frame stop codon, were used as models to achieve ribosome stalling and activation of the SsrA system. Introduction of these gene constructs into B. subtilis led to tagging of the gene products by SsrA RNA. The tagged protein products bound to antibodies that were raised against the proteolysis tag encoded by B. subtilis SsrA [(A)GKTNSFNQNVALAA]. The apolar C-terminal SsrA-tag does not function as a specific signal for proteolytic degradation of SsrA-tagged amylase directly after trans-translation or during the secretion process. Also, SsrA-tagged amylase appeared to be very stable once outside the cell. In contrast, hIL-3 molecules tagged with the native, apolar SsrA-tag were considerably less stable than hIL-3 molecules that received a negatively charged control tag. Not one specific protease, but several non-specific proteases seem to play a role in the rapid degradation of SsrA-tagged hIL-3. The polarity of the C-terminus of heterologous hIL-3 protein proved to be an important determinant for protein stability when produced by B. subtilis. As observed previously in Escherichia coli and B. subtilis, SsrA tagging also occurs frequently in normally growing Gram-positive bacilli and it appears that intracellular proteins are the predominant natural substrates of SsrA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.26388-0 | DOI Listing |
Int J Mol Sci
January 2025
Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.
View Article and Find Full Text PDFMicrolife
January 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany.
Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS.
View Article and Find Full Text PDFMol Ther
December 2024
Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, 01003, USA; Department of Microbiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA. Electronic address:
Effectively targeting intracellular pathways in cancers requires a system that specifically delivers to tumors and internalizes into cancer cells. To achieve this goal, we developed intracellular-delivering (ID) Salmonella with controllable expression of flhDC, to regulate flagella production and cell invasion. We hypothesized that controlling flhDC would overcome the poor colonization seen in prior clinical trials.
View Article and Find Full Text PDFJ Microbiol Immunol Infect
September 2024
Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan; Research Center for Digestive Medicine, Taipei Medical University, Taipei City, Taiwan. Electronic address:
Background: Nontyphoidal Salmonella (NTS) outbreaks of invasive diseases are increasing. Whether the genetic diversity of invasive NTS correlates with the clinical characteristics and bacteremia development in NTS infections remains unclear. In this study, we compared the global transcriptomes between bacteremic and nonbacteremic NTS strains after their interaction with human intestinal epithelial cells in vitro.
View Article and Find Full Text PDFSci Total Environ
August 2024
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA. Electronic address:
Seven public water systems in Minnesota, USA were analyzed from one to five times over a two-year period to assess temporal changes in the concentrations of total bacteria, Legionella spp., and Legionella pneumophila from source (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!