For want of a nail. ramifications of a single gene deletion, dystrophin, in the brain of the mouse.

Front Biosci

Discipline of Biochemistry, School of Molecular and Microbial Biosciences, The University of Sydney, NSW, 2006, Australia.

Published: January 2004

Lack of expression of a single gene, dystrophin, causes the severe, progressive muscle wasting and mental deficits characteristic of Duchenne muscular dystrophy. In this work, we investigated the impact of dystrophin deletion on expression of other genes in the brain cortex, hippocampus and cerebellum using the murine homologue, the mdx mouse, and RT-PCR. Expression of the brain glucose transporters GLUT1 and GLUT2 was found to be decreased, as were some subunits of the GABAA and nicotinic acetylcholine receptors. Genes involved in bioenergetic homeostasis, such as the mitochondrial creatine kinase and the gamma subunit of ATP synthase were also found to be abnormally expressed, while expression of the structural proteins beta-dystrobrevin and rapsyn was also significantly affected. We relate these findings to known functional deficits and discuss the possible mechanisms behind the altered gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.2741/1209DOI Listing

Publication Analysis

Top Keywords

single gene
8
expression
5
nail ramifications
4
ramifications single
4
gene deletion
4
deletion dystrophin
4
dystrophin brain
4
brain mouse
4
mouse lack
4
lack expression
4

Similar Publications

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.

View Article and Find Full Text PDF

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.

View Article and Find Full Text PDF

Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!