The GM2-activator protein (GM2AP) belongs to a group of five small, nonenzymatic proteins that are essential cofactors for the degradation of glycosphingolipids in the lysosome. It mediates the interaction between the water-soluble enzyme beta-hexosaminidase A and its membrane-embedded substrate, ganglioside GM2, at the lipid-water interphase. Inherited defects in the gene encoding this glycoprotein cause a fatal neurological storage disorder, the AB variant of GM2 gangliosidosis. With the aim to establish a convenient eukaryotic system that allows the efficient production of functionally folded, glycosylated GM2AP and offers the potential of cost-efficient isotopic labeling for structural studies by NMR spectroscopy, we established the expression of recombinant GM2AP in the methylotrophic yeast Pichia pastoris. For the construction of expression plasmids, either the full cDNA encoding human GM2AP preproprotein was cloned in the expression vector pPIC3.5K, or the cDNA encoding only the mature form of GM2AP was inserted in the vector pPIC9K under control of the alcohol oxidase 1 promoter. Both plasmids led to the successful secretory expression of active, glycosylated GM2AP, which could easily be purified by Ni-NTA chromatography due to the hexahistidine tag introduced at the C-terminus. Remarkably, the expression of this membrane-active protein in P. pastoris was accompanied by two peculiarities which were not encountered in other expression systems for GM2AP: First, a significant fraction of the secreted protein existed in the form of aggregates, and second, considerable amounts of noncovalently bound lipids were associated with the recombinant protein. A three-step purification scheme was therefore devised consisting of Ni-NTA, reversed phase, and gel filtration chromatography, which finally yielded 10-12 mg of purified, monomeric GM2AP per liter of expression supernatant. MALDI- and ESI-TOF mass spectrometry were employed to assess the processing, homogeneity, and glycosylation pattern of the recombinant protein. Surface plasmon resonance spectroscopy allowed the interaction of GM2AP with immobilized liposomes to be studied. A modified version of FM22 minimal medium was then used in the cost-effective (15)N-labeling of GM2AP to assess its amenability for the structural investigation by NMR spectroscopy. Initial (15)N,(1)H-HSQC experiments show a well-folded protein and provide evidence for extensive conformational exchange processes within the molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2003.11.010DOI Listing

Publication Analysis

Top Keywords

gm2ap
10
expression
8
gm2-activator protein
8
methylotrophic yeast
8
yeast pichia
8
pichia pastoris
8
isotopic labeling
8
glycosylated gm2ap
8
nmr spectroscopy
8
cdna encoding
8

Similar Publications

Urinary GM2AP coincides with renal cortical damage and grades cisplatin nephrotoxicity severity in rats.

Toxicology

November 2024

Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; Universidad de Salamanca (USAL), Departamento de Fisiología y Farmacología, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain. Electronic address:

Nephrotoxicity, including electrolytic disorders and acute kidney injury (AKI), limits the clinical dosage and utility of platinated antineoplastics such as cisplatin. Cisplatin nephrotoxicity embodies a tubulopathy involving the medullary S2 and S3 segments of the proximal and the distal tubules. Higher dosage extends damage over the cortical S1 segment and intensifies overall injury.

View Article and Find Full Text PDF

Dementia in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB) is a progressive neurological condition affecting millions worldwide. The amphiphilic molecule GM2 gangliosides are abundant in the human brain and play important roles in neuronal development, intercellular recognition, myelin stabilization, and signal transduction. GM2 ganglioside's degradation requires hexosaminidase A (HexA), a heterodimer composed of an α subunit encoded by HEXA and a β subunit encoded by HEXB.

View Article and Find Full Text PDF

GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human transgene () can prevent GM2 accumulation in in GM2AP-deficient mice ( mice).

View Article and Find Full Text PDF

Plasma G ganglioside potential biomarker for diagnosis, prognosis and disease monitoring of GM2-Gangliosidosis.

Mol Genet Metab

February 2023

Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France. Electronic address:

GM2-Gangliosidosis are a group of inherited lysosomal storage pathologies characterized by a large accumulation of G ganglioside in the lysosome. They are caused by mutation in HEXA or HEXB causing reduced or absent activity of a lysosomal β-hexosaminidase A, or mutation in GM2A causing defect in GM2 activator protein (GM2AP), an essential protein for the activity of the enzyme. Biochemical diagnosis relies on the measurement of β-hexosaminidases A and B activities, which is able to detect lysosomal enzyme deficiency but fails to identify defects in GM2AP.

View Article and Find Full Text PDF

GM2 gangliosidosis AB variant: first case of late onset and review of the literature.

Neurol Sci

November 2022

Cytogenetic, medical genetic and reproductive biology department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, 87042 Limoges, France, Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France.

AB variant is the rarest form of GM2 gangliosidosis, neurodegenerative diseases caused by lysosomal accumulation of GM2 gangliosides. Less than thirty cases are referenced in the literature, and to date, no late-onset form has been described. Our proband is a 22-year-old male with spinocerebellar ataxia and lower limbs motor deficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!