In the interest of a more thorough understanding of the relationship between sample deposition technique and the quality of data obtained using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, details of the electrospray (ES) process of sample deposition are investigated using a number of techniques. Sample morphology was observed with scanning electron microscopy (SEM) and atomic force microscopy (AFM), while matrix-enhanced secondary ion mass spectrometry (MESIMS) monitored surface coverage. Electrospray deposition reduces the analyte segregation that can occur during traditional dried droplet deposition for MALDI. We attribute statistically significant improvements in the reproducibility of signal intensity and MALDI average molecular mass measurements to the ES sample deposition technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jasms.2003.09.012 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
The global climate crisis is likely to lead to a potential supply risk of lithium (Li) over the coming decades. More than half of the world's production of Li is derived from Li-bearing pegmatites. Although pegmatites are widespread, only a small fraction host economically relevant Li mineralization.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.
Therapeutic and misuse of veterinary drugs, such as antibiotics, can increase the potential risk of residue contamination in animal-derived food products. For milk, these residual antibiotics can have an impact on efficiency in dairy processing factories, as well as economic loss, and can also cause side effects on consumer health. Lateral flow immunoassays (LFIAs) are gaining popularity for their ease of use, low cost and their fulfilment to the REASSURED (real-time connection/monitoring, easy sampling, affordable, specific, user-friendly, rapid/robust, equipment free, deliverable to end user) criteria.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:
Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:
Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!