Transient expression of GABAA receptor alpha2 and alpha3 subunits in differentiating cerebellar neurons.

Brain Res Dev Brain Res

Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-8638, Japan.

Published: February 2004

In the adult mammalian brain, synaptic transmission mediated by gamma-amino butyric acid (GABA) plays a role in inhibition of excitatory synaptic transmission. During brain development, GABA is involved in brain morphogenesis. To clarify how GABA exerts its effect on immature neurons, we examined the expression of the GABAA receptor alpha2 and alpha3 subunits, which are abundantly expressed before alpha1 and alpha6 subunits appear, in the developing mouse cerebellum using in situ hybridization. Proliferating neuronal precursors in the ventricular zone and external granular layer expressed neither alpha2 nor alpha3 subunits. Hybridization signals for the alpha2 and alpha3 subunit mRNAs first appeared in the differentiating zone at embryonic day 13 (E13). The alpha2 subunit was detected in the migrating and differentiating granule cells and cerebellar nucleus neurons until postnatal day 14 (P14). Hybridization signals for the alpha3 subunit mRNA, on the other hand, were localized in the developing Purkinje cells and cerebellar nucleus neurons, and disappeared from Purkinje cells by the end of first postnatal week. Taken together, this indicated that the alpha2 and alpha3 subunits were abundantly expressed in distinct types of cerebellar neurons after completing cell proliferation while forming the neural network. These results suggest that GABA might extrasynaptically activate the GABAA receptors containing alpha2 and/or alpha3 subunits on the differentiating neurons before finishing the formation of synapses and networks, and could be involved in neuronal differentiation and maturation in the cerebellum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devbrainres.2003.11.007DOI Listing

Publication Analysis

Top Keywords

alpha2 alpha3
20
alpha3 subunits
20
expression gabaa
8
gabaa receptor
8
receptor alpha2
8
subunits differentiating
8
cerebellar neurons
8
synaptic transmission
8
subunits abundantly
8
abundantly expressed
8

Similar Publications

Background: Parkinson's disease and Huntington's disease are both neurodegenerative conditions involving the basal ganglia area of the brain. Both conditions can cause symptoms that affect movement. Cognitive decline or dementia can also occur in both.

View Article and Find Full Text PDF

Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.

Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.

View Article and Find Full Text PDF

Plant-based components have helped generate novel lead molecules and scaffolds for anxiety research in psychopharmacology. The present study examined the anxiolytic properties of sesamol (SES), a phenolic lignan derived from Sesamum indicum, employing both in vivo and computational methods to understand its mechanisms of action. In this experiment, adult Swiss albino mice received various doses of SES (25 and 50 mg/kg, p.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the pain-relieving (analgesic) and anxiety-reducing (anxiolytic) effects of citronellal (CTL) in Swiss mice using innovative, cost-effective models.
  • Results showed that CTL significantly decreased various anxiety and pain-related behaviors in mice compared to a control group, even outperforming standard drugs like diclofenac sodium in some tests.
  • In addition, in silico studies suggested that CTL interacts with specific receptors (GABA) and enzymes (COX), indicating its potential as an effective anxiolytic and analgesic agent through these molecular pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Scorpion venom is rich in biologically active peptides and proteins, leading researchers to analyze the venom gland transcriptome of a specific Iranian scorpion to explore medicinal applications and antivenom production.
  • The study used advanced techniques such as Illumina RNA-Seq and bioinformatics to provide a high-quality assembly of 101,180 transcripts from the venom gland, showing a significant presence of complete arthropod BUSCOs.
  • The analysis identified a variety of active peptides and proteins relevant to neurology and inflammation, including ion channel inhibitors, neurotoxins, and different isoforms of a specific venom peptide named HzLVP1.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!