Evidence for selection of insecticide resistance due to insensitive acetylcholinesterase by carbamate-treated nets in Anopheles gambiae s.s. (Diptera: Culicidae) from Côte d'Ivoire.

J Med Entomol

Institut de Recherche pour le Développement (IRD), Society and Health Department, 213 rue La Lafayette, F-75480 Paris 10, France.

Published: November 2003

Pyrethroid-treated nets are an efficient tool for reducing malaria transmission and morbidity. The recent evolution of pyrethroid resistance in several Anopheles species represents a major threat for the future success of roll back malaria in Africa. The possible use of nonpyrethroid insecticides, such as carbamates, on nets is a promising alternative solution because these insecticides are effective against susceptible and pyrethroid-resistant populations of Anopheles and Culex mosquitoes. Unfortunately, carbamate resistance as a result of insensitive acetylcholinesterase has recently been detected in Anopheles gambiae s.s. populations from Côte d'Ivoire. Using biochemical assays on surviving Anopheles mosquitoes from an experimental hut trial, we showed evidence for selection for an insensitive acetylcholinesterase mechanism by carbamate impregnated bednets. However, no such selection has been found with nets treated with pyrethroid alone or pyrethroid/carbamate "two-in-one" -treated nets. Because pyrethroid-impregnated nets were suspected to select for the Kdr mutation in An. gambiae, we propose that use of two-in-one nets could be a promising alternative strategy for the management of insecticide resistance in malaria vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1603/0022-2585-40.6.985DOI Listing

Publication Analysis

Top Keywords

insensitive acetylcholinesterase
12
evidence selection
8
insecticide resistance
8
anopheles gambiae
8
côte d'ivoire
8
nets promising
8
promising alternative
8
nets
7
anopheles
5
selection insecticide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!