The B cell receptor complex (BcR) is essential for normal B lymphocyte function, and surface BcR expression is a crucial checkpoint in B cell development. However, functional requirements for chains of the BcR during development remain controversial. We have used retroviral gene transfer to introduce components of the BcR into chicken B cell precursors during embryonic development. A chimeric heterodimer, in which the cytoplasmic domains of chicken Igalpha and Igbeta are expressed by fusion with the extracellular and transmembrane domains of murine CD8alpha and CD8beta, respectively, targeted the cytoplasmic domains of the BcR to the cell surface in the absence of extracellular BcR domains. Expression of this chimeric heterodimer supported all early stages of embryo B cell development: bursal colonization, clonal expansion, and induction of repertoire diversification by gene conversion. Expression of the cytoplasmic domain of Igalpha, in the absence of the cytoplasmic domain of Igbeta, was not only necessary, but sufficient to support B cell development as efficiently as the endogenous BcR. In contrast, expression of the cytoplasmic domain of Igbeta in the absence of the cytoplasmic domain of Igalpha failed to support B cell development. The ability of the cytoplasmic domain of Igalpha to support early B cell development required a functional Igalpha immunoreceptor tyrosine-based activation motif. These results support a model in which expression of surface IgM following productive V(D)J recombination in developing B cell precursors serves to chaperone the cytoplasmic domain of Igalpha to the B cell surface, thereby initiating subsequent stages of development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.172.4.2210 | DOI Listing |
Cell Death Dis
January 2025
In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.
View Article and Find Full Text PDFCell Death Dis
January 2025
Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!