This study describes a procedure for the enrichment, separation and quantification of four major UV filters in natural waters. Solid-phase extraction combined with liquid chromatography and photodiode array detection (LC-UV-DAD), and gas chromatography with mass spectroscopy (GC-MS) were employed for the analyses. LC of the four compounds with surfactant-modified hydro-organic eluents gave satisfactory resolution of overlapping peaks. In GC, a significant improvement of the detection limits was attained, but only three compounds could be detected. The method was validated for, and applied to, various water samples prone to UV filter accumulation due to recreational activities. Recoveries from real samples were 86-99% with LOQs as low as 0.5 ng/l depending on the sample volume and the analytical procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2003.10.114DOI Listing

Publication Analysis

Top Keywords

filters natural
8
natural waters
8
waters solid-phase
8
solid-phase extraction
8
array detection
8
determination residues
4
residues filters
4
extraction coupled
4
coupled liquid
4
liquid chromatography-photodiode
4

Similar Publications

Green solid lipid nanoparticles by coacervation of fatty acids: An innovative cosmetic ingredient for the delivery of anti-age compounds through the skin.

Int J Pharm

January 2025

University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy; University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy.

The constant exposure of the skin to internal and external stimuli drives towards skin aging and lost in skin hydration and elasticity. Chronic low-grade inflammation, called inflammaging, and oxidative stress are the leading causes of this phenomenon. Fatty acid coacervation is a preparation method for Solid Lipid Nanoparticles (SLNs), which does not employ solvents, and is associated to low energy consumption.

View Article and Find Full Text PDF

Identification of pain-related long non-coding RNAs for pulpitis prediction.

Clin Oral Investig

January 2025

Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.

Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.

Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).

View Article and Find Full Text PDF

The cyanobacterium causes harmful algal blooms that pose a major threat to human health and ecosystem services, particularly due to the prevalence of the potent hepatotoxin microcystin (MC). With their pronounced EPS layer, colonies also serve as a hub for heterotrophic phycosphere bacteria. Here, we tested the hypothesis that the genotypic plasticity in its ability to produce MC influences the composition and assembly of the phycosphere microbiome.

View Article and Find Full Text PDF

The release of algal organic matter (AOM) during seasonal algal blooms increases the complexity and heterogeneity of natural organic matter (NOM) in water sources, altering its hydrophilic-hydrophobic balance and posing significant challenges to conventional water treatment processes. This study aims to verify whether the (Granular activated carbon) GAC selected for the adsorption of NOM in sand filtration effluent can adapt to water quality fluctuations caused by AOM release, and identify the criteria influencing GAC adsorption performance. Results indicated that external surface area, mesopore volume, pore size and surface functional groups were key indicators of GAC adsorption performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!