This work deals with the determination of free sulfite in wine by zone electrophoresis (ZE) with on-line isotachophoresis (ITP) sample pretreatment on a column-coupling (CC) chip with conductivity detection. A rapid pre-column conversion of sulfite to hydroxymethanesulfonate (HMS), to minimize oxidation losses of the analyte, was included into the developed analytical procedure, while ITP and ZE were responsible for specific analytical tasks in the separations performed on the CC chip. ITP, for example, eliminated the sample matrix from the separation compartment and, at the same time, provided a selective concentration of HMS before its transfer to the ZE stage of the separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions favoring a sensitive conductivity detection of HMS. In this way, ITP and ZE cooperatively contributed to a 900 microg/l concentration detectability for sulfite as attained for a 60 nl load of wine (a 15-fold wine dilution and the use of a 0.9 microl sample injection channel of the chip) and, consequently, to the determination of free sulfite when this was present in wine at the concentrations as low as 3 mg/l. The separations were carried out in a closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, made a frame for precise migration and quantitation data as achieved for HMS in both the model and wine samples. Ninety percent recoveries, as typically obtained for free sulfite in wine samples, indicate promising potentialities of the present method as far as the accuracies of the provided analytical results are concerned.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2003.11.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!