In vivo strain measurements can facilitate the study of the bone remodeling response to loading and load changes. Calcium phosphate ceramic (CPC) coatings have been used to attach strain gauges to bone for extended periods of time, but require up to 12 weeks for adequate CPC-to-bone bonding. Transforming growth factor beta 1 (TGF-beta1), an osteoinductive growth factor, was used as a surface enhancement to accelerate bone growth and bonding to CPC particles. The aim of this study was to find an optimal dosage of TGF-beta1 to accelerate the attachment process. CPC-coated strain gauges were enhanced with doses of 0.5, 1.0, or 2.0 microg of TGF-beta1 per gauge. Gauges were placed on the femora of dogs, which were exercised daily and fed ad libitum. After 3, 6, and 12 weeks, gauge attachment was quantitatively assessed using mechanical testing and histomorphometry. Gauge attachment was also qualitatively assessed using back scatter electron microscopy. Agreement of the mechanical test results with both the back scatter electron microscopy images and histomorphometry results showed that the 1.0 microg per gauge dose of TGF-beta1 is an optimal dose to accelerate bone formation and attachment to CPC-coated strain gauges.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.20099DOI Listing

Publication Analysis

Top Keywords

strain gauges
12
transforming growth
8
calcium phosphate
8
phosphate ceramic
8
growth factor
8
accelerate bone
8
cpc-coated strain
8
gauge attachment
8
scatter electron
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!