A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (+/-)-ibuprofen. | LitMetric

Thermodynamic differences between ibuprofen (IBP) racemate and the (+)-enantiomer were studied by X-ray diffraction, thermoanalysis, and crystal energy calculations. The thermodynamic functions of sublimation (as a measure of crystal lattice energy) were obtained by the transpiration method. The sublimation enthalpies (DeltaH(sub)) of (+/-)-IBP and (+)-IBP are 115.8 +/- 0.6 and 107.4 +/- 0.5 kJ. mol(-1), respectively. Using the temperature dependency of the saturated vapor pressure, the relative fractions of enthalpy and entropy of the sublimation process were calculated, and the sublimation process for both the racemate and the enantiomer was found to be enthalpy driven (62%). Two different force fields, Mayo et al. (M) and Gavezzotti (G), were used for comparative analysis of crystal lattice energies. Both force fields revealed that the van der Waals term contributes more to the packing energy in (+)-IBP than in (+/-)-IBP. The hydrogen bonding energy, however, contributes at 29.7 and 32.3% to the total crystal lattice energy in (+)-IBP and (+/-)-IBP (M), respectively. Furthermore, different structure fragments of the IBP molecule were analyzed with respect to their contribution to nonbonded van der Waals interactions. The effect of the C-H distance on the van der Waals term of the crystal lattice energy was also studied.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.10586DOI Listing

Publication Analysis

Top Keywords

crystal lattice
20
lattice energy
12
van der
12
der waals
12
lattice energies
8
sublimation process
8
force fields
8
waals term
8
energy +-ibp
8
+-ibp +/--ibp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!