Mechanisms for the modulation of native glycine receptor channels by ethanol.

J Neurophysiol

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.

Published: June 2004

Previously, we showed that ethanol increases synaptic glycine currents, an effect that depends on ethanol concentration and developmental age of the preparation. Glycine receptor (GlyR) subunits undergo a shift from alpha2/beta to alpha1/beta from neonate to juvenile ages, with synaptic glycine currents from neonate hypoglossal motoneurons (HMs) being less sensitive to ethanol than those from juvenile HMs. Here we investigate whether these dose and developmental effects are also present in excised membrane patches containing GlyRs and if ethanol changes response kinetics. We excised outside-out patches from rat HM somata and applied glycine using either a picospritzer or piezo stack translator. Ethanol (100 mM) increased the response to glycine (200 microM) of patches from neonate and juvenile HMs. However, 30 mM ethanol increased the response from only juvenile HM patches. Using a lower concentration of glycine (30 microM) to observe single channel openings, we found that 100 mM ethanol increased the number of GlyRs that open in response to glycine and decreased first latency to channel opening. To investigate GlyR kinetic properties, we rapidly applied 1 mM glycine for 1 ms and found that glycine currents were increased by ethanol (100 mM) at both ages. For patches from juvenile HMs, ethanol consistently decreased response rise-time and increased response decay time. Using kinetic modeling, we determined that ethanol's potentiation of the glycine response arises from an increase in the glycine association (k(on)) and a decrease in the dissociation (k(off)) rate constants, resulting in increased glycine affinity of the GlyR.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00907.2003DOI Listing

Publication Analysis

Top Keywords

glycine
13
glycine currents
12
juvenile hms
12
increased response
12
ethanol
10
glycine receptor
8
synaptic glycine
8
neonate juvenile
8
applied glycine
8
ethanol 100
8

Similar Publications

Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.

View Article and Find Full Text PDF

In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.

View Article and Find Full Text PDF

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Enhancing newborn screening sensitivity and specificity for missed NICCD using selected amino acids and acylcarnitines.

Orphanet J Rare Dis

January 2025

Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.

Purpose: To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis.

Methods: In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach.

Sci Rep

January 2025

BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.

Article Synopsis
  • Pectin is a complex substance in plant cell walls, crucial for breaking down in animal feed to enhance nutrient absorption.
  • Significant amounts of pectin are found in soybean meal, a common poultry feed, but its structure and the necessary enzymes for degradation are not well understood.
  • The study developed and tested various combinations of fungal enzymes, identifying 10 effective ones for breaking down soybean meal pectin, mainly from the fungus Talaromyces versatilis, and proposes a new structural model for understanding pectin in feed.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!