The c-myb proto-oncogene product (c-Myb) regulates proliferation of hematopoietic cells by inducing the transcription of a group of target genes. Removal or mutations of the negative regulatory domain (NRD) in the C-terminal half of c-Myb leads to increased transactivating capacity and oncogenic activation. Here we report that TIF1beta directly binds to the NRD and negatively regulates the c-Myb-dependent trans-activation. In addition, three corepressors (Ski, N-CoR, and mSin3A) bind to the DNA-binding domain of c-Myb together with TIF1beta and recruit the histone deacetylase complex to c-Myb. Furthermore, the Drosophila TIF1beta homolog, Bonus, negatively regulates Drosophila Myb activity. The Ski corepressor competes with the coactivator CBP for binding to c-Myb, indicating that the selection of coactivators and corepressors is a key event for c-Myb-dependent transcription. Mutations or deletion of the NRD of c-Myb and the mutations found in the DNA-binding domain of v-Myb decrease the interaction with these corepressors and weaken the corepressor-induced negative regulation of Myb activity. These observations have conceptual implications for understanding how the nuclear oncogene is activated.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M313069200DOI Listing

Publication Analysis

Top Keywords

oncogenic activation
8
c-myb
8
negative regulation
8
negatively regulates
8
dna-binding domain
8
myb activity
8
activation c-myb
4
c-myb correlates
4
correlates loss
4
loss negative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!