We present viral evolution as a novel and powerful method to optimize non-viral proteins. We used this approach to optimize the tetracycline (Tc)-regulated gene expression system (Tet system) for its function in mammalian cells. The components of the Tet system were incorporated in the human immunodeficiency virus (HIV)-1 virus such that viral replication is controlled by this regulatory system. Upon long term replication of this HIV-rtTA virus in human T cells, we obtained a virus variant with an enhanced replication potential resulting from an improved rtTA component of the introduced Tet system. We identified a single amino acid exchange, F86Y, which enhances the transcriptional activity and doxycycline (dox) sensitivity of rtTA. We generated a new rtTA variant that is 5-fold more active at high dox levels than the initial rtTA, and 25-fold more sensitive to dox, whereas the background activity in the absence of dox is not increased. This new rtTA variant will be very useful in biological applications that require a more sensitive or active Tet system. Our results demonstrate that the viral evolution strategy can be used to improve the activity of genes by making them an integral and essential part of the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M313895200 | DOI Listing |
Cell Res
January 2025
Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Department of Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkiye.
Background/aim: The p53 protein, a crucial tumor suppressor, governs cell cycle regulation and apoptosis. Similarly, p63, a member of the p53 family, exhibits traits of both tumor suppression and oncogenic behavior through its isoforms. However, the functional impact of ΔNp63β, an isoform of the p63 protein, on human glioma cancer cells like T98G cells remains poorly understood, representing the novelty of this study in the current literature.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Division of Hematology Oncology, Penn State College of Medicine, Hershey, PA, USA.
Background: Thymic epithelial tumor (TET) staging has been based on Masaoka-Koga systems or the 8th edition of the TNM classification, which do not use tumor size as a T descriptor. The 9th edition of the TNM classification incorporates tumor size; however, the study on which this classification is based included only 4.4% of patients from North America.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China; Xianghu Laboratory, Hangzhou, 311231, China. Electronic address:
Objectives: Acinetobacter indicus is an important pathogen of nosocomial infection. The purpose of this study was to analyze the resistance and transmission of A. indicus strain AIBD14 isolated from slaughterhouse environment.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and -ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!