Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling.

Curr Biol

Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Goettingen, Germany.

Published: February 2004

Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system, showing that it provides long-range activity beyond the limit of the developing CNS. Biochemical studies suggest that guidance activity requires cell-surface heparan sulfate to promote binding of mammalian Slit/Robo homologs. Here, we report that the Drosophila homolog of Syndecan (reviewed in ), a heparan sulfate proteoglycan (HSPG), is required for proper Slit signaling. We generated syndecan (sdc) mutations and show that they affect all aspects of Slit activity and cause robo-like phenotypes. sdc interacts genetically with robo and slit, and double mutations cause a synergistic strengthening of the single-mutant phenotypes. The results suggest that Syndecan is a necessary component of Slit/Robo signaling and is required in the Slit target cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2004.01.006DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
12
sulfate proteoglycan
8
slit/robo signaling
8
slit
6
syndecan
4
proteoglycan syndecan
4
syndecan promotes
4
promotes axonal
4
axonal myotube
4
myotube guidance
4

Similar Publications

Hepatitis B virus (HBV) infects cells by attaching to heparan sulfate proteoglycans (HSPG) and Na/taurocholate cotransporting polypeptide (NTCP). The endothelial lipase LIPG bridges HSPG and HBV, facilitating HBV attachment. From a randomized peptide expression library, we identified a short sequence binding to LIPG.

View Article and Find Full Text PDF

Lysosomal storage disorders characterized by defective heparan sulfate (HS) degradation, such as Mucopolysaccharidosis type IIIA-D (MPS-IIIA-D), result in neurodegeneration and dementia in children. However, dementia is preceded by severe autistic-like behaviours (ALBs), presenting as hyperactivity, stereotypies, social interaction deficits, and sleep disturbances. The absence of experimental studies on ALBs' mechanisms in MPS-III has led clinicians to adopt symptomatic treatments, such as antipsychotics, which are used for non-genetic neuropsychiatric disorders.

View Article and Find Full Text PDF

Objective: To assess the association of serum glycocalyx shedding components (Heparan sulfate, HS; Hyaluronic acid, HA; Syndecan-1, Sdc-1) with outcomes after CA.

Methods: Patients who were comatose for >24 h after CA in the intensive care unit (ICU) of the Affiliated Hospital of Xuzhou Medical University from 9/2021 to 04/2023 were enrolled. Serum samples were collected 24 h after CA to measure the concentrations of glycocalyx shedding components.

View Article and Find Full Text PDF

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!