Analysis of selection methodologies for combinatorial library design.

Mol Divers

Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.

Published: November 2004

We have implemented and adapted in Pralins (Program for Rational Analysis of Libraries in silico), the most popular sparse (cherry picking) and full array (sublibrary) selection algorithms: hierarchical clustering, k-means clustering, Optimum Binning, Jarvis Patrick, Pral-SE (partitioning techniques) and MaxSum, MaxMin, MaxMin averaged, DN2, CTD (distance-based methods). We have validated the program with an already synthesized three-component combinatorial library of FXR partial agonists characterized by standard computational chemistry descriptors as case study. This has let us analyze the goodness of both the partitioning techniques for space division and all the selection methodologies with respect to representativity in terms of population and space coverage for different selection sizes. Within the chemical space analyzed, both hierarchical clustering and Optimum Binning division strategies are found to be the most advantageous reference space divisions to be used in the subsequent population and space coverage studies. Complete hierarchical clustering appears also to be the preferred selection methodology for both sparse and full array problems. The full array restriction fulfillment can easily be overcome by convenient optimization algorithms that allow optimal reagent selection preserving > 90% of the population coverage.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:modi.0000006836.76687.8bDOI Listing

Publication Analysis

Top Keywords

full array
12
hierarchical clustering
12
selection methodologies
8
combinatorial library
8
clustering optimum
8
optimum binning
8
partitioning techniques
8
population space
8
space coverage
8
selection
5

Similar Publications

Nanozymes with Modulable Inhibition Transfer Pathways for Thiol and Cell Identification.

Anal Chem

January 2025

Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.

The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.

View Article and Find Full Text PDF

Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated.

View Article and Find Full Text PDF

Background: Unhealthy alcohol use is a leading cause of preventable mortality and a risk factor for an array of social and health problems. The Intervention in Small primary care Practices to Implement Reduction in unhealthy alcohol use (INSPIRE) study is part of a nationwide campaign to improve the identification and treatment of patients engaging in unhealthy alcohol use.

Methods: We conducted a single arm, pragmatic study consisting of seventeen primary care practices in the Chicago metropolitan area, Wisconsin, and California across two waves with a 6-month latent period, a 12-month intervention period, followed by a 6-month sustainability period.

View Article and Find Full Text PDF

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!