Although advances in highly active antiretroviral therapy (HAART) have made long-term suppression of HIV an achievable goal of therapy, a substantial proportion of first-line regimens will eventually fail. Successful longterm treatment requires consideration of downstream treatment options at the time of initiating or changing regimens. An understanding of the patterns and interactions of resistance mutations, and the appropriate use of genotypic and phenotypic testing is an important component of successful drug sequencing. Resistance to multiple nucleoside reverse transcriptase inhibitors (NRTIs) may result from several genotypically distinct pathways, including the Q151M (151 complex), the 69 insertion complex, two distinct thymidine analogue mutational pathways and the K65R mutation. Knowledge of the clinical implications of these and other resistance pathways, as well as the antagonism or synergy between mutations, helps guide individualized treatment choices from initial therapy in the treatment-naive patient to salvage therapy in the highly treatment-experienced individual. The development of effective sequencing strategies will depend upon the continued understanding of drug resistance mutation patterns and their associations with specific HAART combinations. This review summarizes research advances that further the understanding of nucleoside and nucleotide analogue resistance mutations, and their interplay.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nucleoside nucleotide
8
nucleotide analogue
8
reverse transcriptase
8
transcriptase inhibitors
8
resistance mutations
8
resistance
6
analogue reverse
4
inhibitors clinical
4
clinical review
4
review antiretroviral
4

Similar Publications

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments.

View Article and Find Full Text PDF

Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation.

View Article and Find Full Text PDF

Biochemical characterization and inhibitor potential of African swine fever virus thymidine kinase.

Int J Biol Macromol

December 2024

Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. Electronic address:

African Swine Fever (ASF) is a highly contagious disease affecting both domestic pigs and wild boars. In domestic pigs, ASF is a rapidly-progressing disease with a mortality rate reaching 100 %, causing tremendous economic loss in affected areas. ASFV is caused by African Swine Fever Virus (ASFV), which is a large, enveloped double-stranded DNA virus belonging to the Asfarviridae family.

View Article and Find Full Text PDF

Hepatitis B and C (HBV and HCV) testing has been performed in Japan since 2002 and is subsidized by central and prefectural governments. A follow-up program for HBV- or HCV-infected persons was started at that time in Ishikawa Prefecture. This study analyzed the long-term follow-up data from this program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!