Nanogel nanosecond photonic crystal optical switching.

J Am Chem Soc

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

Published: February 2004

We developed a robust nanosecond photonic crystal switching material by using poly(N-isopropylacrylamide) (PNIPAM) nanogel colloidal particles that self-assemble into crystalline colloidal arrays (CCAs). The CCA was polymerized into a loose-knit hydrogel which permits the individual embedded nanogel PNIPAM particles to coherently and synchronously undergo their thermally induced volume phase transitions. A laser T-jump from 30 to 35 degrees C actuates the nanogel particle shrinkage; the resulting increased diffraction decreases light transmission within 900 ns. Additional transmission decreases occur with characteristic times of 19 and 130 ns. Individual NIPAM sphere volume switching occurs in the approximately 100 ns time regime. These nanogel nanosecond phenomena may be useful in the design of fast photonic crystal switches and optical limiting materials. Smaller nanogels will show even faster volume phase transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja037118aDOI Listing

Publication Analysis

Top Keywords

photonic crystal
12
nanogel nanosecond
8
nanosecond photonic
8
volume phase
8
phase transitions
8
nanogel
5
crystal optical
4
optical switching
4
switching developed
4
developed robust
4

Similar Publications

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

We present, for the first time, to our knowledge, power splitters with multiple channel configurations in one-dimensional grating waveguides (1DGWs) that maintain crystal lattice-sensitive Bloch mode profiles without perturbation across all output channels, all within an ultra-miniaturized footprint of just 2.1 × 2.2 μm.

View Article and Find Full Text PDF

Topological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.

View Article and Find Full Text PDF

Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!