We report the preparation, crystallization, and solid-state characterization of a benzyl-substituted spirobiphenalenyl radical. The crystal structure shows that the radical is monomeric in the solid state, with the molecules packed in an unusual one-dimensional (1-D) fashion that we refer to as a pi-step stack. This particular mode of 1-D stacking is forced on the lattice arrangement by the presence of the orthogonal phenalenyl units that were specifically incorporated to prevent the crystallization of low-dimensional structures. The structure shows that this strategy is effective, and neighboring molecules in the stack can only interact via the overlap of one pair of active (spin-bearing) carbon atoms per phenalenyl unit, leading to the pi-step structure in which the remaining four active carbon atoms per phenalenyl unit do not interact with nearest neighbor molecules. The magnetic susceptibility data in the temperature range 4-360 K may be fit to an antiferromagnetic Heisenberg S = 1/2 linear chain model with intrachain spin coupling J = -52.3 cm(-1). Despite the uniform stacking, the material has a room temperature conductivity of 1.4 x 10(-3) S/cm and is best described as a Mott insulator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja037864f | DOI Listing |
Mikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:
Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!