The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf0346556DOI Listing

Publication Analysis

Top Keywords

ferulic acid
32
release ferulic
12
wheat wheat
12
wheat malt
12
ferulic
8
beer production
8
production process
8
barley malt
8
malt ferulic
8
4-vinylguaiacol levels
8

Similar Publications

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Cassava (Manihot esculenta Crantz) is a crucial crop in tropics and subtropics, primarily cultivated for its tuber. However, its foliage is rich in protein and can supply essential elements for ruminants. The objective of this study was to evaluate the phytochemical compounds by Gas chromatography-MS (GC-MS) and the main phenolic by High Pressure Liquid Chromatography (HPLC) present in cassava foliage, along with the fermentation pattern using a semi-automated gas production (GP) system.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of a specific enzyme (FAEA) expressed in maize that targets the apoplast, focusing on its activity during the late stages of plant senescence and after storing the plant material.
  • FAEA levels increased until the reproductive (R) stage but dropped during full leaf senescence (R+), while the enzyme remained stable even after six months of cold storage.
  • The research found that FAEA expression led to decreased cell wall components like ferulates and improved the breakdown (saccharification) of plant material by enzymes, making it easier to extract sugars at later development stages.
View Article and Find Full Text PDF

The postingestion journey and bioconversion of wheat bran-bound ferulic acid, a known beneficial phytochemical, remain insufficiently understood. This study aims to systematically investigate its bioaccessibility, bioavailability, excretion, and colonic metabolism, both and . Initial analysis confirmed the abundance and bioactivity of ferulic acid in wheat bran.

View Article and Find Full Text PDF

Objective: The main objective of this study was to elucidate the effector material basis of Cimicifugae Rhizoma (CR) for the treatment of acute pneumonia (AP) and to explore the potential mechanisms underlying the anti-AP effects of these active components in a lipopolysaccharide (LPS)-induced inflammation model of lung epithelial cells.

Methods: Chemical components were identified using ultra-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-TOF-MS), and a CR component library was subsequently established based on a combination of databases and available literature. Bioinformatics techniques were used to construct "component-target" and "protein-protein interaction (PPI)" networks, and the potential active components and core targets screened according to degree value, followed by molecular docking and in vitro experiments for verification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!