Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seeds, of either commercial crucifer crops or some wild and weed relatives, were screened for intact glucosinolates using a previously developed ion-pair LC-MS method. This method, in contrast to GC-MS techniques, ensures the accurate measurement of all classes of glucosinolates. Many crucifer seeds contained very high concentrations of glucosinolates with low concentrations of additional pigments and secondary metabolites. The other common seed metabolites were cinnamoylcholine esters, for example, sinapine. Glucosinolates derived from homologues of l-methionine were characteristic of Brassica and related crucifer species. In addition, significant concentrations of 4-hydroxy-3-indolylmethylglucosinolate were found in the majority of Brassica species. Wild and weed species often had relatively simple glucosinolate profiles: either a single glucosinolate or a predominant glucosinolate together with trace amounts of others. Species identified with seed glucosinolate profiles suitable for purification included various Alyssum, Erysimum, and Iberis species for 3-methythiopropyl-glucosinolate and 3-methylsulfinylpropyl-glucosinolate and various Alyssum, Erysimum, and Lepidium species with very high concentrations of C4-C6 aliphatic glucosinolates. Seeds of Arabis, Barbarea, Lepidium, Moringa, and Sinapis species were good sources of aromatic glucosinolates, and Azima tetracantha was a good source for N-methoxy-3-indolylmethyl-glucosinolate. MS data are reported for all of the intact glucosinolates detected from the screening process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf030530p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!