The toxicity of arsenic (As) species to Lemna gibba L. and the influence of PO(4) (3-) on As bioavailability and uptake were tested in batch culture. L. gibba were exposed to six test concentrations of NaHAsO(4). 7H(2)O and NaAsO(3), with 0, 0.0136, 13.6, and 40 mg L(-1) KH(2)PO(4). In batch culture As toxicity to L. gibba did not relate linearly to As concentration. The growth rate, related to frond number as recommended by OECD and ISO/DIN, was significantly inhibited in fronds exposed to 20-50 microg L(-1) As(III) compared with fronds exposed to As(V). The growth rate was stimulated when plants were exposed to 50-250 microg L(-1) of both As(III) and As(V). After exposure to 300-800 microg L(-1) growth inhibition was significantly higher for As(III) than for As(V), whereas above 800 microg L(-1) As(V) was inhibited the most. The bioaccumulation of As(III) and As(V) was significantly higher for P-deficient cultures (0.98 +/- 0.08 and 1.02 +/- 0.19 g kg(-1), respectively for 0.0136 mg L(-1) PO(4) (3-)) than for P-sufficient cultures (243 and 343 mg kg(-1) for 40 mg L(-1), respectively). Plants exposed to As(V) had uptake and accumulation values slightly higher than did plants exposed to As(III). No significant differences in bioaccumulation were found between plants exposed to a concentration of As(III) >1 mg L(-1) and those exposed to As(V) at the same concentration. This indicates a direct relationship to P content in the culture. Toxicity may result from the uptake of As(V) instead of PO(4) (3-) as a result of ion competition during uptake because of close thermodynamic properties, which may change the interaction among components in the media. The toxicity pattern is interpreted as a manifestation of changing speciation in the batch culture and of the oxidation of As(III) to As(V) in an oxygen-rich environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.10148 | DOI Listing |
Semi-aerobic Aged-refuse Bioreactor (SAARB) has a good effect on nitrogen removal in leachate, but a strong greenhouse gas (N2O) was generated during the nitrification and denitrification process. The effect of salinity (7-30 g x L(-1)) on the leachate treatment and the N2O production from SAARB system was investigated. Experimental results showed that salinity ranging from 7 to 30 g x L(-1) had no significant effect on COD removal, and the removal efficiency was always more than 85%.
View Article and Find Full Text PDFIn order to investigate the feasibility of deep denitrification and simultaneous removing phthalate esters (PAEs) in the process of reclaimed water treatment uses three-dimensional biofilm-electrode reactor coupled with sulfur autotrophic deep denitrification technology (3BER-S), the technological characteristics and mechanisms were analyzed based on determining the static adsorption capacity of biofilm cultured active carbon fillers in 3BER-S reactor together with the operation results of dynamic denitrification and simultaneous PAEs removing. The results showed that the average adsorption rates of DBP, DEHP were 85.84% and 97.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2015
An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.
View Article and Find Full Text PDFBased on indirect competitive immunoassay mechanism, bisphenol A (BPA) was detected by the evanescent wave all-fiber immunosensor previously developed with the detection limit of 0.2 microg x L(-1) and the linear detection range of 0.3-33.
View Article and Find Full Text PDFIn this paper, a method of determination of trace lead in water by UV-Visible diffuse reflectance spectroscopy combined with surfactant and membrane filtration enrichment was proposed. In the NH3 x H2O-NH4Cl buffer solution with pH 8.5, the lead(II) ion would react with dithizone to form the red complex under vigorous stirring, which is hydrophobic and can be enriched by the mixed cellulose ester membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!