Intracranial pressure changes in craniosynostotic rabbits.

Plast Reconstr Surg

Department of Neurological Surgery, Cleft Palate-Craniofacial Center, University of Pittsburgh, Pa. 15260, USA.

Published: February 2004

Cranial vault and brain deformities in individuals with craniosynostosis are thought to result, in part, from changes in intracranial pressure, but clinical findings are still inconclusive. The present study describes intracranial pressure changes in a rabbit model with naturally occurring, uncorrected coronal suture synostosis. Longitudinal and cross-sectional intracranial pressure data were collected from 241 New Zealand White rabbits, divided into four groups: normal controls (n = 81); rabbits with delayed-onset coronal suture synostosis (n = 78); rabbits with early-onset unilateral coronal suture synostosis (n = 32); and rabbits with early-onset bilateral coronal suture synostosis (n = 50). Epidural intracranial pressure measurements were obtained at 10, 25, 42, and 84 days of age using a NeuroMonitor microsensor transducer. Normal rabbits and rabbits with delayed-onset coronal suture and early-onset unilateral coronal suture synostosis showed a similar oscillating pattern of age-related changes in normal and head-down intracranial pressure from 10 to 84 days of age. In contrast, rabbits with early-onset bilateral coronal suture synostosis showed markedly elevated normal and head-down intracranial pressure levels from 10 to 25 days and showed a different pattern through 84 days. Results from one-way analysis of variance revealed significant (p < 0.01) group differences only at 25 days of age. Rabbits with early-onset bilateral coronal suture synostosis had significantly (p < 0.05) greater normal and head-down intracranial pressure (by 42 percent) than the other three groups. These results showed differing intracranial pressure compensations in rabbits with uncorrected multiple-suture synostosis compared with normal rabbits or rabbits with uncorrected single-suture synostosis, possibly through progressive cerebral atrophy and decreased intracranial volume, abnormal intracranial vascular patterns and blood volume, and/or differing cranial vault compensatory changes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.PRS.0000101056.33534.F0DOI Listing

Publication Analysis

Top Keywords

intracranial pressure
36
coronal suture
32
suture synostosis
28
rabbits early-onset
16
rabbits
12
early-onset bilateral
12
bilateral coronal
12
days age
12
normal head-down
12
head-down intracranial
12

Similar Publications

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

The most common diagnostic error of IIH is inaccurate funduscopic examination. Moreover, IIH could be diagnosed without papilledema. Trans orbital sonography could be used as a non-invasive and cheap tool for discovering increased ICP (intracranial Pressure).

View Article and Find Full Text PDF

Background And Purpose: While the pulsatility index (PI) measured by transcranial Doppler (TCD) has broader associations with outcomes in neurocritical care, its use in monitoring delayed cerebral infarction (DCI) in patients with aneurysmal subarachnoid hemorrhage (SAH) is not endorsed by current clinical guidelines. Recognizing that arterial pressure gradient (ΔP) can be estimated using PI, we investigated the potential significance of TCD-estimated ΔP.

Methods: In this observational study of 186 SAH patients, we recorded the mean cerebral blood flow velocity (mCBFV) and PI values from the middle cerebral artery, along with corresponding blood pressures.

View Article and Find Full Text PDF

Objective: This randomized controlled trial (RCT) aimed to compare the short-, mid-, and long-term outcomes in patients with malignant intracranial hypertension undergoing either decompressive craniectomy (DC) or hinge craniotomy (HC).

Methods: In this prospective RCT, 38 patients diagnosed with malignant intracranial hypertension due to ischemic infarction, traumatic brain injury, or non-lesional spontaneous intracerebral hemorrhage, who required cranial decompression, were randomly allocated to the DC and HC groups.

Results: The need for reoperation, particularly cranioplasty, in the DC group was significantly different from that in the HC group.

View Article and Find Full Text PDF

We discuss a case of a 19-year-old female who presented with pressure headaches and progressive vision loss. In the emergency department, a series of diagnostic tests were conducted, including CT, MRI, and lumbar puncture with measurement of opening pressure. All these examinations yielded results consistent with the suspected diagnosis of idiopathic intracranial hypertension (IIH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!