Caroverine, a multifunctional drug with antioxidant functions.

Biofactors

Department of Pharmacology and Toxicology/Institute for Applied Botany, Veterinary University of Vienna, Vienna, Austria.

Published: April 2004

Here we show that lipid peroxidation of liposomal membranes was suppressed in the presence of Caroverine, a spasmolytic drug used in some countries. In order to understand the mechanism of this antioxidant action of Caroverine we studied the interaction of Caroverine with superoxide radicals, hydroxyl radicals and peroxynitrite. The results of the study show that the reaction of Caroverine with O2-* radicals is of marginal significance. However, it is efficient in removing peroxynitrite and a particular high reaction constant was found for reaction with hydroxyl radicals. The strong antioxidant activity of Caroverine is therefore based both on the partial prevention of the formation and the highly active scavenging of hydroxyl radicals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.5520190110DOI Listing

Publication Analysis

Top Keywords

hydroxyl radicals
12
caroverine
6
radicals
5
caroverine multifunctional
4
multifunctional drug
4
drug antioxidant
4
antioxidant functions
4
functions lipid
4
lipid peroxidation
4
peroxidation liposomal
4

Similar Publications

Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.

View Article and Find Full Text PDF

Development, analysis, and effectiveness of an F-C-MgO/rGOP catalyst for the degradation of atrazine using ozonation process: Synergistic effect, mechanism, and toxicity assessment.

J Environ Manage

January 2025

Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:

This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.

View Article and Find Full Text PDF

A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!