Mass spectroscopic analysis of the low molecular mass (LMM) range of the serum/plasma proteome is a rapidly emerging frontier for biomarker discovery. This study examined the proportion of LMM biomarkers, which are bound to circulating carrier proteins. Mass spectroscopic analysis of human serum following molecular mass fractionation, demonstrated that the majority of LMM biomarkers exist bound to carrier proteins. Moreover, the pattern of LMM biomarkers bound specifically to albumin is distinct from those bound to non-albumin carriers. Prominent SELDI-TOF ionic species (m/z 6631.7043) identified to correlate with the presence of ovarian cancer were amplified by albumin capture. Several insights emerged: a) Accumulation of LMM biomarkers on circulating carrier proteins greatly amplifies the total serum/plasma concentration of the measurable biomarker, b) The total serum/plasma biomarker concentration is largely determined by the carrier protein clearance rate, not the unbound biomarker clearance rate itself, and c) Examination of the LMM species bound to a specific carrier protein may contain important diagnostic information. These findings shift the focus of biomarker detection to the carrier protein and its biomarker content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851653PMC
http://dx.doi.org/10.1155/2003/104879DOI Listing

Publication Analysis

Top Keywords

carrier protein
16
lmm biomarkers
16
carrier proteins
12
mass spectroscopic
8
spectroscopic analysis
8
molecular mass
8
biomarkers bound
8
circulating carrier
8
total serum/plasma
8
clearance rate
8

Similar Publications

Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery.

Tissue Eng Regen Med

January 2025

Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.

Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.

Methods: Thirty patients (17 male, 13 female; mean age 55.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Evaluation of the serum level of Lipocalin 2 in vitiligo.

Arch Dermatol Res

January 2025

Department of Dermatology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.

Vitiligo is considered as depigmenting skin disorder where patches of skin losing their pigment. Lipocalin-2 (LCN2) is one of the Inflammatory adipokines that has a potential role in skin disorders and other inflammatory diseases as well. To measure the concentration level of LCN2 in vitiligo patients compared to healthy controls and to investigate its relation to disease activity and other clinical data to evaluate its role in the pathogenesis of the disease.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!