A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thr-90 plays a vital role in the structure and function of bacteriorhodopsin. | LitMetric

Thr-90 plays a vital role in the structure and function of bacteriorhodopsin.

J Biol Chem

Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.

Published: April 2004

The role of Thr-90 in the bacteriorhodopsin structure and function was investigated by its replacement with Ala and Val. The mutant D115A was also studied because Asp-115 in helix D forms a hydrogen bond with Thr-90 in helix C. Differential scanning calorimetry showed a decreased thermal stability of all three mutants, with T90A being the least stable. Light-dark adaptation of T90A was found to be abnormal and salt-dependent. Proton transport monitored using pyranine signals was approximately 10% of wild type for T90A, 20% for T90V, and 50% for D115A. At neutral or alkaline pH, the M rise of these mutants was faster than that of wild type, whereas M decay was slower in T90A. Overall, Fourier transform infrared (FTIR) difference spectra of T90A were strongly pH-dependent. Spectra recorded on films adjusted at the same pH at 243 or 277 K, dry or wet, showed similar features. The D115A and T90V FTIR spectra were closer to WT, showing minor structural differences. The band at 1734 cm(-1) of the deconvoluted FTIR spectrum, corresponding to the carboxylate of Asp-115, was absent in all mutants. In conclusion, Thr-90 plays a critical role in maintaining the operative location and structure of helix C through three complementary interactions, namely an interhelical hydrogen bond with Asp-115, an intrahelical hydrogen bond with the peptide carbonyl oxygen of Trp-86, and a steric contact with the retinal. The interactions established by Thr-90 emerge as a general feature of archaeal rhodopsin proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M313988200DOI Listing

Publication Analysis

Top Keywords

hydrogen bond
12
thr-90 plays
8
structure function
8
wild type
8
thr-90
5
t90a
5
plays vital
4
vital role
4
role structure
4
function bacteriorhodopsin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!