Hematopoietic differentiation of rhesus monkey embryonic stem cells.

Blood Cells Mol Dis

Department of Pediatrics, College of Medicine, University of Illinois, Chicago, IL 60612, USA.

Published: September 2004

Several lines of embryonic stem cells (ESC) have been established from rhesus monkey blastocysts. We have examined two of these cell lines for their potential for generating hematopoietic progenitors in cell culture, and we identified culture conditions, including supplementation with bone morphogenetic proteins (BMP), that result in hematopoietic differentiation of rhesus ESC with high efficiency. We have also characterized the resulting hematopoietic progenitor cells for their patterns of gene expression, as compared to those of hematopoietic progenitor cells harvested from rhesus monkey bone marrow. Of more than 60 genes examined in this manner, CD34+/CD38- cells derived from embryonic stem cells and those obtained from bone marrow demonstrated very similar patterns of gene expression. However, with integrin alphaL, IL-6 receptor, and flt-3 gene expression was greatly diminished or absent in CD34+/CD38- cells derived from the ESC, whereas the bone marrow-derived progenitors showed substantial expression of all of these genes. When the same type of comparison was done with mouse (D3 and CCE) as well as human (H1) embryonic stem cells, in each case comparing ESC-derived hematopoietic progenitors with those harvested from bone marrow, the only consistent deficiency of gene expression was that of flt-3. In hematopoietic precursors derived from mouse ESC, globin-gene expression has previously been shown to be a useful index of the embryological maturity of the cells, and we also examined globin-gene expression in rhesus monkey ESC-derived hematopoietic precursor cells, using a semiquantitative technique. CD34+/CD38- cells demonstrated expression of the epsilon- and gamma-globin genes, but negligible levels of beta globin, suggesting that these cells were at the developmental stage in which the yolk sac and fetal liver are the primary sites of hematopoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcmd.2003.09.008DOI Listing

Publication Analysis

Top Keywords

rhesus monkey
16
embryonic stem
16
stem cells
16
gene expression
16
cells
12
bone marrow
12
cd34+/cd38- cells
12
hematopoietic
8
hematopoietic differentiation
8
differentiation rhesus
8

Similar Publications

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.

View Article and Find Full Text PDF

Highly efficient construction of monkey blastoid capsules from aged somatic cells.

Nat Commun

January 2025

State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.

Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells.

View Article and Find Full Text PDF

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Background: The removal of preformed antibodies with cleaving enzyme like IdeS (Imlifidase) has demonstrated therapeutic potential in organ transplantation for sensitized recipients. However, preformed xenoreactive antibodies (XAbs) against porcine glycans are predominantly IgM and considered detrimental in pig-to-human xenotransplantation.

Methods: Recombinant IceM, an endopeptidase cleaving IgM, was generated in Escherichia coli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!