Peroxovanadate induces alpha 1B-adrenoceptor phosphorylation and association with protein kinase C.

Eur J Pharmacol

Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248 México, D.F. 04510, Mexico.

Published: February 2004

Peroxovanadate induced a marked increase in the phosphorylation state of alpha(1B)-adrenoceptors. The effect was dose-dependent (EC(50) approximately 2 microM) and rapid, reaching its maximum in 5 min and remaining at this level for 30 min. Hydrogen peroxide also increased alpha(1B)-adrenoceptor phosphorylation but to a lesser extent, in an ephemeral fashion, and only at high (millimolar) concentrations. The effect of peroxovanadate was blocked by inhibitors of protein kinase C such as staurosporine and rottlerin and only partially reduced by genistein and inhibitors of phosphoinositide 3-kinase. Protein kinase C alpha, delta and epsilon are associated with the alpha(1B)-adrenoceptor under basal conditions, as reflected by coimmunoprecipitation. Such association was increased by peroxovanadate for all isoforms. In contrast, hydrogen peroxide increased only the association of the epsilon isoform to the adrenoceptor. Peroxovanadate decreased the ability of noradrenaline to increase intracellular calcium, indicating that the receptor phosphorylation induced has functional consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2003.11.050DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
hydrogen peroxide
8
peroxide increased
8
peroxovanadate
5
peroxovanadate induces
4
induces alpha
4
alpha 1b-adrenoceptor
4
phosphorylation
4
1b-adrenoceptor phosphorylation
4
phosphorylation association
4

Similar Publications

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

African swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.

View Article and Find Full Text PDF

Arthropod-borne viral diseases are acute febrile illnesses, sometimes with chronic effects, that can be debilitating and even fatal worldwide, affecting particularly vulnerable populations. Indigenous communities face not only the burden of these acute febrile illnesses, but also the cardiovascular complications that are worsened by urbanization. A cross-sectional study was conducted in an Indigenous population in the Northeast Region of Brazil to explore the association between arboviral infections (dengue, chikungunya, and Zika) and cardiac biomarkers, including cardiotrophin 1, growth differentiation factor 15, lactate dehydrogenase B, fatty-acid-binding protein 3, myoglobin, N-terminal pro-B-type natriuretic peptide, cardiac troponin I, big endothelin 1, and creatine kinase-MB, along with clinical and anthropometric factors.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!