Signal transducer and activator of transcription 6 (STAT6) regulates transcriptional activation in response to interleukin-4 (IL-4) by direct interaction with coactivators. The CREB-binding protein (p300/CBP) and the nuclear coactivator 1 (NCoA-1), a member of the p160/steroid receptor coactivator family, bind independently to specific regions of the STAT6 transactivation domain and act as coactivators. The interaction between STAT6 and NCoA-1 is mediated by an LXXLL motif in the transactivation domain of STAT6. To define the mechanism of coactivator recognition, we determined the crystal structure of the NCoA-1 PAS-B domain in complex with the STAT6 LXXLL motif. The amphipathic, alpha-helical STAT6 LXXLL motif binds mostly through specific hydrophobic interactions to NCoA-1. A single amino acid of the NCoA-1 PAS-B domain establishes hydrophilic interactions with the STAT6 peptide. STAT6 interacts only with the PAS-B domain of NCoA-1 but not with the homologous regions of NCoA-2 and NCoA-3. The residues involved in binding the STAT6 peptide are strongly conserved between the different NCoA family members. Therefore surface complementarity between the hydrophobic faces of the STAT6 fragment and of the NCoA-1 PAS-B domain almost exclusively defines the binding specificity between the two proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2003.12.057 | DOI Listing |
Protein Sci
November 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR.
View Article and Find Full Text PDFBioorg Med Chem
November 2024
Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles.
View Article and Find Full Text PDFJ Chemother
October 2024
Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
The low survival rate of adult T-cell leukemia/lymphoma (ATL) underscores the critical need for innovative therapeutic agents. While the pharmacokinetics of HDACis have been documented in several hematological neoplasms, there is a notable gap in research regarding their activity against ATL. Given that hypoxia can induce unpredictable effects on lymphoma cells, this study aimed to evaluate the toxic effects of MS-275 and novel analogs on ATL cells in hypoxic condition for the first time.
View Article and Find Full Text PDFACS Omega
September 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
In patients with von-Hippel Lindau (VHL) disease, hypoxia-independent accumulation of HIF-2α leads to increased transcriptional activity of HIF-2α:ARNT that drives cancers such as renal cell carcinoma. Belzutifan, a recently FDA-approved drug, is designed to prevent the transcriptional activity of HIF-2α:ARNT, thereby overcoming the consequences of its unnatural accumulation in VHL-dependent cancers. Emerging evidence suggests that the naturally occurring variant G323E located in the HIF-2α drug binding pocket prevents inhibitory activity of belzutifan analogs, though the mechanism of inhibition remains unclear.
View Article and Find Full Text PDFPharmaceuticals (Basel)
July 2024
Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil.
The molecular mechanisms underlying the observed anticancer effects of flavonoids remain unclear. Increasing evidence shows that the aryl hydrocarbon receptor (AHR) plays a crucial role in neoplastic disease progression, establishing it as a potential drug target. This study evaluated the potential of hydroxy flavonoids, known for their anticancer properties, to interact with AHR, both in silico and in vitro, aiming to understand the mechanisms of action and identify selective AHR modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!