A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. | LitMetric

Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH) is an autosomal recessive neurodegenerative disorder characterized by early-onset ataxia, ocular motor apraxia, and hypoalbuminemia. Recently, the causative gene for EAOH, APTX, has been identified. Of the two splicing variants of APTX mRNA, the short and the long forms, long-form APTX mRNA was found to be the major isoform. Aprataxin is mainly located in the nucleus, and, furthermore, the first nuclear localization signal located near the amino terminus of the long-form aprataxin is essential for its nuclear localization. We found, based on the yeast two-hybrid and coimmunoprecipitation experiments, that the long-form but not the short-form aprataxin interacts with XRCC1 (x-ray repair cross-complementing group 1). Interestingly the amino terminus of the long-form aprataxin is homologous with polynucleotidekinase-3'-phosphatase, which has been demonstrated to be involved in base excision repair, a subtype of single-strand DNA break repair, through interaction with XRCC1, DNA polymerase beta, and DNA ligase III. These results strongly support the possibility that aprataxin and XRCC1 constitute a multiprotein complex and are involved in single-strand DNA break repair, and furthermore, that accumulation of unrepaired damaged DNA underlies the pathophysiological mechanisms of EAOH.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.10808DOI Listing

Publication Analysis

Top Keywords

early-onset ataxia
8
ataxia ocular
8
ocular motor
8
motor apraxia
8
apraxia hypoalbuminemia
8
aptx mrna
8
nuclear localization
8
amino terminus
8
terminus long-form
8
long-form aprataxin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!