This study demonstrated the effects of acute acetylcholinesterase (AChE) inhibition by donepezil (Aricept) on the cerebral cholinergic neuronal system in the brains of young (5.2 +/- 1.1 years old) and aged (20.3 +/- 2.6 years old) monkeys (Macaca mulatta) in the conscious state. Donepezil at doses of 50 and 250 microg/kg suppressed AChE activity, analyzed by metabolic rate (k(3)) of N-[(11)C]methyl-4-piperidyl acetate ([(11)C]MP4A), in all cortical regions in a dose-dependent manner in both age groups. However, the suppression degree was more marked in young than in aged monkeys. AChE inhibition by donepezil resulted in a dose-dependent increase in acetylcholine levels in the prefrontal cortex of young animals as measured by microdialysis. Binding of (+)N-[(11)C]propyl-3-piperidyl benzilate ([(11)C](+)3-PPB) to cortical muscarinic receptors was reduced by donepezil, probably in a competitive inhibition manner. Aged monkeys showed less reduction of [(11)C](+)3-PPB binding than young animals. As evaluated by an oculomotor delayed response task, aged monkeys showed impaired working memory performance compared to young monkeys, and the impaired performance was partly improved by the administration of donepezil, due to the facilitation of the cholinergic neuronal system by AChE inhibition. These results demonstrate that the PET imaging technique with specific labeled compounds in combination with microdialysis and a behavioral cognition task could be a useful method to clarify the mechanism of drugs in the living brains of experimental animals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.10310DOI Listing

Publication Analysis

Top Keywords

cholinergic neuronal
12
neuronal system
12
ache inhibition
12
aged monkeys
12
effects acute
8
acute acetylcholinesterase
8
cerebral cholinergic
8
combination microdialysis
8
inhibition donepezil
8
+/- years
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!