We evaluated muscle biopsies from 57 patients with genetically confirmed myotonic dystrophy type 2/proximal myotonic myopathy (DM2/PROMM). Light microscopy showed myopathic together with "denervation-like" changes in almost all biopsies obtained from four different muscles: increased fiber size variation, internal nuclei, small angulated fibers, pyknotic nuclear clumps, and predominant type 2 fiber atrophy. Quantitative morphometry in 18 biopsies that were immunostained for myosin heavy chain confirmed a predominance of nonselective type 2 fiber atrophy. These histological changes were similar in all patients regardless of the site of biopsy, the predominant clinical symptoms and signs, and the clinical course. It is likely that, in a number of undiagnosed patients, DM2 is the underlying disorder. With a better understanding of the histopathological pattern in DM2, biopsies from patients with undiagnosed neuromuscular disorders can now be reevaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.10545DOI Listing

Publication Analysis

Top Keywords

myotonic dystrophy
8
dystrophy type
8
biopsies patients
8
type fiber
8
fiber atrophy
8
patients
5
muscle pathology
4
pathology patients
4
patients myotonic
4
type
4

Similar Publications

Objective: To analyze the results of nocturnal breathing parameters during sleep based on nocturnal pulse oximetry and to study of characteristics of external respiration in genetically confirmed patients with dystrophic myotonia (DM).

Material And Methods: The subjects of the study were patients with genetically confirmed DM types 1 and 2 who were hospitalized in the neurological departments of the Republican Scientific and Practical Center for Neurology and Neurosurgery. The clinical picture of the disease, comorbidities, sleep questionnaires, laboratory tests, overnight pulse oximetry and spirometry were performed and analyzed.

View Article and Find Full Text PDF

Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function.

View Article and Find Full Text PDF

As adaptors, catalysts, guides, messengers, scaffolds and structural components, RNAs perform an impressive array of cellular regulatory functions often by recruiting RNA-binding proteins (RBPs) to form ribonucleoprotein complexes (RNPs). While this RNA-RBP interaction network allows precise RNP assembly and the subsequent structural dynamics required for normal functions, RNA motif mutations may trigger the formation of aberrant RNP structures that lead to cell dysfunction and disease. Here, we provide our perspective on one type of RNA motif mutation, RNA gain-of-function mutations associated with the abnormal expansion of short tandem repeats (STRs) that underlie multiple developmental and degenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!