An acidic phospholipase A(2) (LPLA(2)) was recently purified and cloned. THP-1 cells were used to characterize the gene induction of LPLA(2). THP-1 cells were stimulated with several differentiation agents. The LPLA(2) mRNA and activity increased in cells treated with phorbol ester but not with vitamin D3, interferon-gamma, or granulocyte macrophage colony-stimulating factor. All-trans-retinoic acid enhanced mRNA expression and enzyme activity in a dose- and time-dependent manner. The natural 9-cis and 13-cis isomers of retinoic acid enhanced transcription and activity. Two classes of nuclear receptors, the retinoic acid receptor (RAR) and the retinoid X receptor (RXR), mediate retinoic acid signaling. Specific RAR and RXR agonists were used to identify the nuclear receptor responsible for LPLA(2) induction by retinoic acid. Treatment with the RAR agonist 4-[E-2-tetrahydro-5,5,8,8-tetra-methyl-2-naphthalenyl]1-propenyl benzoic acid (TTNPB) resulted in a small and statistically significant increase of the mRNA expression and activity of LPLA(2). The RXR agonist methoprene acid worked as well as all-trans-retinoic acid at increasing both mRNA and enzyme activity. The methoprene acid and TTNPB effects were not synergistic. The peroxisome proliferator-activated receptor gamma agonists 15-deoxy-Delta(12,14)-prostaglandin J(2) and troglitazone failed to induce LPLA(2) activity and mRNA. Thus, an RXR-dependent pathway controls LPLA(2) gene activation by retinoic acid in THP-1 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.M300342-JLR200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!