Cardiac arrhythmias represent a major area of cardiovascular research, and for drug therapy, a large choice of antiarrhythmic agents have been available. However, clinical trials with antiarrhythmic drugs have recently indicated that serious side effects may considerably limit the use of various antiarrhythmic agents, in particular, for preventing arrhythmia-related mortality. Amiodarone with its complex mode of action, while exerting a strong and favorable antiarrhythmic action, posseses extracardiac untoward side effects originating from its chemical structure. In this paper, we report on our attempt to develop conceptually new, therapeutically valuable antiarrhythmic compounds, in which Class I/B and Class III features were combined into single molecules bearing no structural resemblance to amiodarone. Synthesis and pharmacological screening of series of N-(phenylalkyl)-N-(phenoxyalkyl)amines led us to discover some new promising compounds with the required dual mode of action. GYKI-16638, selected for further investigation, was also found to possess a remarkable in vivo antiarrhythmic effect, and it is now considered as a safe new antiarrhythmic drug candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867043456232 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).
View Article and Find Full Text PDFMol Divers
January 2025
Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China.
Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa.
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on , using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!