AI Article Synopsis

  • Cardiac arrhythmias are a key focus in heart-related research, with many antiarrhythmic drugs available, yet clinical trials show serious side effects limit their effectiveness, particularly in reducing arrhythmia-related deaths.
  • Amiodarone is known for its strong antiarrhythmic effects but has harmful side effects due to its chemical structure, prompting the need for safer alternatives.
  • The study reports the creation of new antiarrhythmic compounds that combine Class I/B and Class III features, discovering GYKI-16638 as a promising candidate with effective antiarrhythmic properties and a better safety profile.

Article Abstract

Cardiac arrhythmias represent a major area of cardiovascular research, and for drug therapy, a large choice of antiarrhythmic agents have been available. However, clinical trials with antiarrhythmic drugs have recently indicated that serious side effects may considerably limit the use of various antiarrhythmic agents, in particular, for preventing arrhythmia-related mortality. Amiodarone with its complex mode of action, while exerting a strong and favorable antiarrhythmic action, posseses extracardiac untoward side effects originating from its chemical structure. In this paper, we report on our attempt to develop conceptually new, therapeutically valuable antiarrhythmic compounds, in which Class I/B and Class III features were combined into single molecules bearing no structural resemblance to amiodarone. Synthesis and pharmacological screening of series of N-(phenylalkyl)-N-(phenoxyalkyl)amines led us to discover some new promising compounds with the required dual mode of action. GYKI-16638, selected for further investigation, was also found to possess a remarkable in vivo antiarrhythmic effect, and it is now considered as a safe new antiarrhythmic drug candidate.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867043456232DOI Listing

Publication Analysis

Top Keywords

mode action
12
antiarrhythmic compounds
8
class iii
8
antiarrhythmic agents
8
side effects
8
antiarrhythmic
7
novel antiarrhythmic
4
compounds combined
4
class
4
combined class
4

Similar Publications

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.

View Article and Find Full Text PDF

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Bioactive Molecules, Ethnomedicinal Uses, Toxicology, and Pharmacology of Sond (Fabaceae): Systematic Review.

Plants (Basel)

January 2025

College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa.

Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on , using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!