Probability of anomalously large bit-error rate in long haul optical transmission.

Phys Rev E Stat Nonlin Soft Matter Phys

Corning Inc., SP-DV-02-8, Corning, New York 14831, USA.

Published: December 2003

We consider a linear model of optical transmission through a fiber with birefringent disorder in the presence of amplifier noise. Both disorder and noise are assumed to be weak, i.e., the average bit-error rate (BER) is small. The probability distribution function (PDF) of rare violent events leading to the values of BER much larger than its typical value is estimated. We show that the PDF has a long algebraic-like tail.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.68.066619DOI Listing

Publication Analysis

Top Keywords

bit-error rate
8
optical transmission
8
probability anomalously
4
anomalously large
4
large bit-error
4
rate long
4
long haul
4
haul optical
4
transmission consider
4
consider linear
4

Similar Publications

Quantum key distribution (QKD) is critical for future proofed secure communication. Satellites will be necessary to mediate QKD on a global scale. The limitations of the existing quantum memory and repeater technology mean that twin-field QKD (TF-QKD) provides the most feasible near-term solution to perform QKD with an untrusted satellite.

View Article and Find Full Text PDF

We propose a low-polarization-sensitive 1 × 2 carrier-injection-type silicon photonic switch consisting of a single Mach-Zehnder interferometer, an input-/output-side polarization splitter and rotators, bidirectional light injection, and an external optical circulator. A polarization-dependent loss (PDL) of 1.3 dB was achieved using the proposed structure, whereas a PDL exceeding 17 dB was observed without the structure.

View Article and Find Full Text PDF

A high security physical layer encryption scheme for dual-mode orthogonal frequency division multiplexing with index modulation (DM-OFDM-IM) in magnetic induction communication is proposed. The scheme utilizes DM-OFDM-IM, where subcarriers within each subblock are divided into two groups, each modulated by distinct signal constellations. DM-OFDM-IM leverages the sequential information from the modulated constellation to transmit extra information, leading to a substantial enhancement in spectral efficiency.

View Article and Find Full Text PDF

Experimental demonstration of 8190-km long-haul semiconductor-laser chaos synchronization induced by digital optical communication signal.

Light Sci Appl

January 2025

Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 510006, China.

Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected.

View Article and Find Full Text PDF

The vast interconnection of resource-constrained devices and the immense amount of data exchange in the Internet of Things (IoT) environment resulted in the resurgence of various security threats. This resource-constrained environment of IoT makes data security a very challenging task. Recent trends in integrating lightweight cryptographic algorithms have significantly improved data security in the IoT without affecting performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!