Average hydrodynamic correction for the Brownian dynamics calculation of flocculation rates in concentrated dispersions.

Phys Rev E Stat Nonlin Soft Matter Phys

Centro de Física, Laboratorio de Fisicoquímica de Coloides, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, Venezuela.

Published: December 2003

In order to account for the hydrodynamic interaction (HI) between suspended particles in an average way, Honig et al. [J. Colloid Interface Sci. 36, 97 (1971)] and more recently Heyes [Mol. Phys. 87, 287 (1996)] proposed different analytical forms for the diffusion constant. While the formalism of Honig et al. strictly applies to a binary collision, the one from Heyes accounts for the dependence of the diffusion constant on the local concentration of particles. However, the analytical expression of the latter approach is more complex and depends on the particular characteristics of each system. Here we report a combined methodology, which incorporates the formula of Honig et al. at very short distances and a simple local volume-fraction correction at longer separations. As will be shown, the flocculation behavior calculated from Brownian dynamics simulations employing the present technique, is found to be similar to that of Batchelor's tensor [J. Fluid. Mech. 74, 1 (1976); 119, 379 (1982)]. However, it corrects the anomalous coalescence found in concentrated systems as a result of the overestimation of many-body HI.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.68.061408DOI Listing

Publication Analysis

Top Keywords

brownian dynamics
8
diffusion constant
8
average hydrodynamic
4
hydrodynamic correction
4
correction brownian
4
dynamics calculation
4
calculation flocculation
4
flocculation rates
4
rates concentrated
4
concentrated dispersions
4

Similar Publications

Assessment of residential renewable energy investment under dynamic market environment: Aspect from household benefits.

J Environ Manage

January 2025

Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa City, Kanagawa Prefecture, 252-0882, Japan. Electronic address:

The adoption of residential renewable energy is pivotal for achieving the 'Net Zero' goal, yet financial assessments of household investments in this area remain complex due to dynamic market conditions. This study introduces a novel closed-form financial valuation framework for residential solar photovoltaic (PV) systems, explicitly addressing the uncertainties of electricity market price fluctuations (market risk) and energy policy changes (policy risk) using Geometric Brownian Motion (GBM). A case study in France demonstrates the framework's application, revealing that the discount rate is the most influential factor in solar PV valuation, followed by system lifespan and policy-driven Feed-in Tariff (FiT) rates.

View Article and Find Full Text PDF

The impact of colloid-solvent dynamic coupling on the coarsening rate of colloidal phase separation.

J Colloid Interface Sci

January 2025

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:

Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).

View Article and Find Full Text PDF

Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.

View Article and Find Full Text PDF

Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!