Unusual behavior of the surface-induced tilted layers in free-standing films of a non-layer-shrinkage liquid crystal compound.

Phys Rev E Stat Nonlin Soft Matter Phys

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Published: December 2003

Null-transmission ellipsometry has been conducted to study the molecular arrangements in free-standing films of one chiral compound above the bulk smectic-A-smectic-C* transition temperature. Upon cooling under a proper electric field, a nonplanar-anticlinic-synclinic or a nonplanar-synclinic transition has been observed. The nonplanar structure continuously evolves into the anticlinic or synclinic structures. Increasing electric field can induce a rare transition from a synclinic to an anticlinic structure.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.68.060702DOI Listing

Publication Analysis

Top Keywords

free-standing films
8
electric field
8
unusual behavior
4
behavior surface-induced
4
surface-induced tilted
4
tilted layers
4
layers free-standing
4
films non-layer-shrinkage
4
non-layer-shrinkage liquid
4
liquid crystal
4

Similar Publications

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF
Article Synopsis
  • Transition metal oxides, like MnO, show great promise as anodes for flexible electrodes but face challenges such as low conductivity and poor cycling performance.
  • A new method called "spontaneous complexation and exfoliation" creates flexible thin-film electrodes using MnO nanocrystals and reduced graphene oxide (rGO), improving their mechanical flexibility and lithium-ion storage capacity.
  • The resulting flexible anodes deliver around 1220 mAh/g over 1000 cycles with high-rate capacity, while maintaining performance even under bending, highlighting their potential for advanced energy storage solutions.
View Article and Find Full Text PDF

All-Printed Microfluidic-Electrochemical Devices for Glucose Detection.

Biosensors (Basel)

November 2024

Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada.

Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic-electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device's performance.

View Article and Find Full Text PDF

The adsorption of (X = Ni, Pd, and Pt) nanoclusters is simulated by using first-principles methods on MgO(100) and on a MgO monolayer supported on Ag(100), considering the presence of interfacial oxygen. On both the free-standing MgO surface and MgO/Ag, all clusters exhibit robust adhesion and negative charge transfer. molecular dynamics calculations at 200 K demonstrate the stability of the nanoparticles on the MgO/Ag support.

View Article and Find Full Text PDF

Oligoadenine Strand Functionalized Polyacrylamide Hydrogel Film Exhibiting pH-Triggered High-Degree Inverse Shape Deformations.

Chembiochem

December 2024

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.

Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!