Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The shot-noise detection limit in current high-precision magnetometry [Nature (London) 422, 596 (2003)] is a manifestation of quantum fluctuations that scale as 1/sqrt[N] in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [Rep. Math. Phys. 43, 405 (1999)]] to surpass this conventional limit by exploiting conditional spin squeezing to achieve 1/N field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.91.250801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!