Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea.

Phys Rev Lett

Institut de Physique des Nanostructures, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: January 2004

Cerium adatoms, deposited on a Ag(111) surface, are found by low-temperature scanning tunneling microscopy to self-assemble into large ordered hexagonal arrays covering macroscopically the entire surface. We show that the 32 A periodicity of the superlattice is caused by the interaction of surface-state electrons with Ce adatoms and that the large-scale formation of the superlattice is governed by a subtle balance between the sample temperature, the surface diffusion barrier, and the concentration-dependent adatom interaction potential.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.016101DOI Listing

Publication Analysis

Top Keywords

creation atomic
4
atomic superlattice
4
superlattice immersing
4
immersing metallic
4
metallic adatoms
4
adatoms two-dimensional
4
two-dimensional electron
4
electron sea
4
sea cerium
4
cerium adatoms
4

Similar Publications

Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.

View Article and Find Full Text PDF

This research presents an explicit analysis of the effects of sintering temperature (T) on the structural, morphological, magnetic, and optical properties of CuMgFeO nanoferrites synthesized via the sol-gel method. To accomplish it, Cu-Mg ferrite NPs were sintered at temperatures ranging from 300 to 800 °C in increments of 100 with a constant holding duration of 5 h. Thermogravimetric analysis was used to observe the degradation of organic components and the thermally stable zone of the material.

View Article and Find Full Text PDF

Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance).

View Article and Find Full Text PDF

Metalloporphyrins have been widely utilized as building blocks for molecular self-assembly in organic solvents, but their application in water is less common due to competition from water molecules for the metal center. However, Co(III) metalloporphyrins are notable for their strong binding to two aromatic amine ligands in aqueous buffers. In this study, we present a comprehensive investigation of the binding behavior of Co(III) tetraphenyl sulfonic acid porphyrin with selected aromatic and aliphatic amines in aqueous solution.

View Article and Find Full Text PDF

Recently, metal-based atomically thin materials (M-ATMs) have experienced rapid development due to their large specific surface areas, abundant electrochemically accessible sites, attractive surface chemistry, and strong in-plane chemical bonds. These characteristics make them highly desirable for energy-related conversion reactions. However, the insufficient active sites and slow reaction kinetics leading to unsatisfactory electrocatalytic performance limited their commercial application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!