The use of virtual reality (VR) in the training of operative dentistry is a recent innovation and little research has been published on its efficacy compared to conventional training methods. Two groups of dental students, with no experience in operative dentistry, were trained solely by either VR or conventional training in the preparation of conventional class 1 cavities. The subjects all used the same operative armamentarium and phantom heads, and were allocated the same duration of practice periods. At the completion of these training periods, both groups produced two class 1 cavities on the lower left first molar, which were subsequently coded and blindly scored for the traditional assessment criteria of outline form, retention form, smoothness, cavity depth and cavity margin angulation. An ordinal score of 0-3 or 0-4 was assigned for each assessment criterion: the higher the score, the worse the evaluation. After initial independent scoring, the two examiners discussed any notable differences until an agreed score was reached. Once the codes were broken, non-parametric analyses were performed on the data. Wilcoxon Tests for the semiquantitative scores indicated significant differences between the VR and conventional training groups for outline form, depth and smoothness but not for retention or cavity margin angulation at P < 0.05 level, with the VR group receiving the higher, i.e. worse, scores. Cavity margin angulation approached significance with a P-value of 0.0536. The results indicated that VR-based skills acquisition is unsuitable for use as the sole method of feedback and evaluation for novice students.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-0579.2003.00309.x | DOI Listing |
Sci Rep
December 2024
Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.
View Article and Find Full Text PDFSmall
December 2024
Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China.
Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.
View Article and Find Full Text PDFPhotoacoustics
February 2025
College of Control Science & Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.
Background: Short fiber-reinforced composites (SFRCs) are restorative materials for large cavities claimed to effectively resist crack propagation. This study aimed to compare the mechanical properties and physical characteristics of five commercially available SFRCS (Alert, Fibrafill Flow, Fibrafill Dentin, everX Flow, and everX Posterior) against a conventional particulate-filled composite (PFC, Essentia Universal).
Methods: The following characteristics were evaluated in accordance with ISO standards: flexural strength and modulus and fracture toughness.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!