Comparison of four Sesbania species to remediate Pb/Zn and Cu mine tailings.

Environ Manage

Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.

Published: August 2003

A 6-month greenhouse pot trial was performed, aimed at screening appropriate Sesbania species for remediation of Pb/Zn and Cu mine tailings. Performances of young seedlings of four Sesbania species (S. cannabina, S. grandiflora, S. rostrata, and S. sesban) were compared with and without inoculation of rhizobia. Seedlings were planted in two types of tailings amended with garden soil or garden soil mixed with river sediment. The results indicated that inoculated plants generally produced a higher biomass than samples without inoculation. Pb/Zn mine tailings containing rather high concentrations of total and water-soluble Cu, Pb, and Zn were toxic to plant growth compared with Cu mine tailings, according to the growth performance of the four species. Sesbania sesban and S. rostrata showed superior growth performance, compared to the other two species. Thus, they can serve as pioneer species to modify the barren environment, by providing organic matter and essential nutrients such as nitrogen, upon decomposition, in a relatively short period of time. This is especially true for S. rostrata, which is an annual plant that forms both stem and root nodules. However, a longer-term field trial should be conducted to investigate if superior species can beneficially modify the habitat for the growth of subsequent plant communities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-003-2901-1DOI Listing

Publication Analysis

Top Keywords

mine tailings
16
sesbania species
12
pb/zn mine
12
garden soil
8
growth performance
8
species
7
tailings
5
comparison sesbania
4
species remediate
4
remediate pb/zn
4

Similar Publications

Coal mining in India, especially open-cast mining, substantially strengthens the economy while concurrently causing environmental deterioration, such as soil pollution with toxic chemicals and heavy metals. This study sought to examine the efficacy of vermicompost as a remediation technique for Mine Tailing Soil (MTS) in the Ledo Coal Fields. During a 120-day duration, different concentrations of vermicompost (20%, 30%, and 40%) were administered to MTS, and the impacts on soil physicochemical parameters, fertility, and plant growth were evaluated.

View Article and Find Full Text PDF

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Historic copper mining left a legacy of metal-rich tailings resulting in ecological impacts along and within Torch Lake, an area of concern in the Keweenaw Peninsula, Michigan, USA. Given the toxicity of copper to invertebrates, this study assessed the influence of this legacy on present day nearshore aquatic and terrestrial ecosystems. We measured the metal (Co, Cu, Ni, Zn, Cd) and metalloid (As) concentrations in sediment, pore water, surface water, larval and adult insects, and two riparian spider taxa collected from Torch Lake and a nearby reference lake.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Article Synopsis
  • Research on beryllium (Be) geochemistry in terrestrial environments is complicated due to its toxicity and low environmental concentrations, but high levels were found in groundwater at a Tailings Storage Facility in Sweden.
  • A study from 2016-2024 analyzed groundwater samples and identified that over 90% of dissolved Be was truly dissolved in suboxic conditions, with significant concentrations correlated with sulfate complexes at pH levels of 6.0 to 6.4.
  • The research indicated that as pH decreases, Be concentrations are likely to rise due to long-term sulfide oxidation, while secondary minerals on the tailings shore may act as temporary barriers that can limit Be mobility.
View Article and Find Full Text PDF

Microbial sulfur cycling determinants and implications for environmental impacts.

Chemosphere

January 2025

Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada. Electronic address:

Sulfur-oxidizing bacteria (SOB) play a vital role in the occurrence of sulfur oxidation intermediate (SOI) compounds often recalcitrant to currently available, abiotic treatment within metal mine tailings impoundments (TI). As inadvertent SOI discharge post-treatment can lead to the uncontrolled acidification of receiving environments, it becomes increasingly important to elucidate the environmental controls on SOB identities and sulfur cycling within these relatively unstudied systems. Here, results identified controlling factors on SOB community differentiation and associated metabolic pathway occurrence through integrated physicochemical, geochemical, and microbial field and experimental investigation across three summers (2016, 2017, 2021) in a stratified Northern Ontario base metal TI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!