Non-invasive imaging methods are increasingly used to study the evolution and therapy of brain diseases under both clinical and experimental conditions. In the animal experiment, these methods can be supplemented by invasive tissue assays to allow precise characterization of the underlying pathophysiology. Based on such an approach, this review evaluates the importance of in vivo nuclear magnetic resonance (NMR) and positron emission tomography (PET) for the understanding of the pathophysiology of brain ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-7091-0651-8_5 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore, 138669, Republic of Singapore.
Purpose: Basal Cell Carcinoma (BCC), the most common subtype of non-melanoma skin cancers (NMSC), is prevalent worldwide and poses significant challenges due to their increasing incidence and complex treatment considerations. Existing clinical approaches, such as Mohs micrographic surgery, are time-consuming and labour-intensive, requiring meticulous layer-by-layer excision and examination, which can significantly extend the duration of the procedure. Current optical imaging solutions also lack the necessary spatial resolution, penetration depth, and contrast for effective clinical use.
View Article and Find Full Text PDFBrain Stimul
January 2025
Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium; Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Psychiatry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Center for Care and Cure Technology (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
Clin Radiol
December 2024
Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India. Electronic address:
Aim: Evaluation of pericoronary adipose tissue changes induced by inflammation by non-invasive techniques is challenging.
Purpose: To find the association between pericoronary adipose tissue attenuation (FAI) changes and future acute coronary events in nonobstructive coronary artery disease.
Materials And Methods: Ours was a single-centre, prospective observational study on patients with atypical chest pain who underwent coronary computed tomography angiography (CCTA).
Br J Radiol
January 2025
Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada.
Objectives: To evaluate 18F-DCFPyL-PET/MRI whole-gland-derived radiomics for detecting clinically significant (cs) prostate cancer (PCa) and predicting metastasis.
Methods: Therapy-naïve PCa patients who underwent 18F-DCFPyL PET/MRI were included. Whole-prostate-segmentation was performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!