A simple analysis of volatile organic compounds (VOCs), such as benzene, toluene, m,p-xylene, and o-xylene, at low levels in the atmosphere was conducted using passive samplers. The methods were applied to analyzing the behavior and origin of VOCs in Kyoto City. The passive samplers were exposed for 7 - 14 days at sampling sites in Kyoto City and for 30 days in the mountains (Mt. Hiei and Mt. Daimonji). Shibata gas-tube samplers packed with activated carbon were used for the determination of VOCs. The absorbed VOCs were extracted into carbon disulfide (CS2) and measured by FID-GC. The determination limits and relative standard deviations for VOCs were 0.3 microg/m3 and 3%, respectively. The samplers were set up at 5 sites in March, 2001 and at 13 stations on Mt. Hiei in November, 2002. The average concentrations of ambient benzene, which were higher than the environmental criterion (3.0 microg/m3), except for those on Mt. Daimonji from March, 2001, to February, 2002, decreased to below 3.0 microg/m3 from March, 2002, to February, 2003. The decrease in ambient benzene may have been due to a decrease in the benzene content in gasoline by the end of 1999, and also by implementation of the Pollutant Release and Transfer Register (PRTR) Act in 2001.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.20.107 | DOI Listing |
Nat Commun
January 2025
Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.
Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order.
View Article and Find Full Text PDFChemosphere
December 2024
Bursa Technical University, Department of Environmental Engineering, Bursa, Türkiye. Electronic address:
The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. Electronic address:
Pine needle, pine bark, and soil samples were collected from various regions in South Korea, considering the suitability of vegetation samples as passive samplers. A total of 27 organochlorine pesticides (OCPs) were analyzed using a gas chromatograph/high-resolution mass spectrometer (GC/HRMS). The total concentrations of OCPs ranged between 650 and 3652 pg/g dw in soil, 215 and 1384 pg/g ww in pine needles, and 456 and 1723 pg/g ww in pine bark.
View Article and Find Full Text PDFSci Total Environ
December 2024
TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany. Electronic address:
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples.
View Article and Find Full Text PDFACS ES T Water
December 2024
Berliner Wasserbetriebe, Neue Jüdenstraße 1, 10179 Berlin, Germany.
We present a versatile flow-through tube passive sampling device (TPS), with a controllable feedwater volumetric flow, that can be calibrated against the feedwater load of organic micropollutants (OMPs). This semipassive approach has the advantage of a determinable water load feeding the sampling device. The design of the TPS allows for new sampling scenarios in closed piping while providing stable and controlled sampling conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!