AI Article Synopsis

  • A study analyzed low-level volatile organic compounds (VOCs) in Kyoto City using passive samplers, focusing on compounds like benzene and toluene.
  • The samplers were placed at urban sites for 7-14 days and in mountainous areas for 30 days, employing activated carbon to collect VOCs and measuring them with FID-GC.
  • Results showed elevated benzene levels initially exceeded environmental standards but decreased over time, likely due to reduced benzene in gasoline and regulatory measures from the Pollutant Release and Transfer Register (PRTR) Act.

Article Abstract

A simple analysis of volatile organic compounds (VOCs), such as benzene, toluene, m,p-xylene, and o-xylene, at low levels in the atmosphere was conducted using passive samplers. The methods were applied to analyzing the behavior and origin of VOCs in Kyoto City. The passive samplers were exposed for 7 - 14 days at sampling sites in Kyoto City and for 30 days in the mountains (Mt. Hiei and Mt. Daimonji). Shibata gas-tube samplers packed with activated carbon were used for the determination of VOCs. The absorbed VOCs were extracted into carbon disulfide (CS2) and measured by FID-GC. The determination limits and relative standard deviations for VOCs were 0.3 microg/m3 and 3%, respectively. The samplers were set up at 5 sites in March, 2001 and at 13 stations on Mt. Hiei in November, 2002. The average concentrations of ambient benzene, which were higher than the environmental criterion (3.0 microg/m3), except for those on Mt. Daimonji from March, 2001, to February, 2002, decreased to below 3.0 microg/m3 from March, 2002, to February, 2003. The decrease in ambient benzene may have been due to a decrease in the benzene content in gasoline by the end of 1999, and also by implementation of the Pollutant Release and Transfer Register (PRTR) Act in 2001.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.20.107DOI Listing

Publication Analysis

Top Keywords

passive samplers
12
simple analysis
8
analysis volatile
8
volatile organic
8
organic compounds
8
compounds vocs
8
kyoto city
8
march 2001
8
ambient benzene
8
vocs
6

Similar Publications

Quantum memory at nonzero temperature in a thermodynamically trivial system.

Nat Commun

January 2025

Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.

Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order.

View Article and Find Full Text PDF

The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.

View Article and Find Full Text PDF

Pine needle, pine bark, and soil samples were collected from various regions in South Korea, considering the suitability of vegetation samples as passive samplers. A total of 27 organochlorine pesticides (OCPs) were analyzed using a gas chromatograph/high-resolution mass spectrometer (GC/HRMS). The total concentrations of OCPs ranged between 650 and 3652 pg/g dw in soil, 215 and 1384 pg/g ww in pine needles, and 456 and 1723 pg/g ww in pine bark.

View Article and Find Full Text PDF

Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater.

Sci Total Environ

December 2024

TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany. Electronic address:

As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples.

View Article and Find Full Text PDF

We present a versatile flow-through tube passive sampling device (TPS), with a controllable feedwater volumetric flow, that can be calibrated against the feedwater load of organic micropollutants (OMPs). This semipassive approach has the advantage of a determinable water load feeding the sampling device. The design of the TPS allows for new sampling scenarios in closed piping while providing stable and controlled sampling conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!