6-Tetrahydrobiopterin is known to bind to an allosteric site of tyrosinase to directly inhibit the enzyme. However, simultaneous measurements of ultraviolet-visible absorption spectra and oxygen consumption led us to conclude that the inhibition was due to oxidation of 6-tetrahydrobiopterin by dopaquinone. Immediately after addition of 6-tetrahydrobiopterin, tyrosinase stopped producing dopachrome from either tyrosine or dopa. Duration of inhibition was proportional to the concentration of added 6-tetrahydrobiopterin and the enzyme activity was fully restored after the inhibition. Surprisingly, there was a rapid consumption of oxygen during the inhibition period. In addition, absorption spectra indicated that the only reaction that occurred during the inhibition was oxidation of 6-tetrahydrobiopterin to 7,8-dihydrobiopterin. In the absence of tyrosine or dopa, tyrosinase did not oxidize 6-tetrahydrobiopterin, suggesting that a reaction intermediate between dopa and dopachrome was a target for the inhibition. We propose a new mechanism in which dopa is oxidized to dopaquinone and the latter, instead of producing dopachrome, is reduced back to dopa by 6-tetrahydrobiopterin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2003.12.184 | DOI Listing |
Piebaldism is characterised by the absence of pigment in patches on the skin, usually present at birth. Mutations in the kit gene are documented. Clinically this disorder can mimic vitiligo.
View Article and Find Full Text PDFFree Radic Biol Med
February 2008
Department of Biomedical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
Quinones are potentially dangerous substances generated from quinols via the intermediates semiquinone and hydrogen peroxide. Low semiquinone radical concentrations are acting as radical scavengers while high concentrations produce reactive oxygen species and quinones, leading to oxidative stress, apoptosis, and/or DNA damage. Recently it was recognised that thioredoxin reductase/thioredoxin (TR/T) reduces both p- and o-quinones.
View Article and Find Full Text PDFJ Invest Dermatol
February 2004
Clinical and Experimental Dermatology, Department of Biomedical Sciences, University of Bradford, West Yorkshire, UK.
To date there is ample evidence that patients with vitiligo accumulate millimolar concentrations of hydrogen peroxide (H2O2) in their epidermis as well as in their blood lymphocytes/monocytes. Several enzymes are affected by this H2O2 including catalase, glutathione peroxidase, and 4 alpha-carbinolamine dehydratase. The latter enzyme disrupts the recycling of the essential cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4) for the aromatic amino acid hydroxylases as well as the nitric oxide synthases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
Department of Biochemisry, College of Natural Sciences, Kangwon National University, 200-701, Chunchon, Republic of Korea.
6-Tetrahydrobiopterin is known to bind to an allosteric site of tyrosinase to directly inhibit the enzyme. However, simultaneous measurements of ultraviolet-visible absorption spectra and oxygen consumption led us to conclude that the inhibition was due to oxidation of 6-tetrahydrobiopterin by dopaquinone. Immediately after addition of 6-tetrahydrobiopterin, tyrosinase stopped producing dopachrome from either tyrosine or dopa.
View Article and Find Full Text PDFAnn N Y Acad Sci
October 1999
Clinical and Experimental Dermatology Department of Biomedical Sciences, University of Bradford, United Kingdom.
In the human epidermis both keratinocytes and melanocytes express POMC m-RNA. Immunohistochemical studies of both cell types demonstrate significantly higher levels of alpha-MSH in melanocytes than in keratinocytes. Both cell types also hold the full capacity for de novo synthesis/recycling of the essential cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!