Anti-Müllerian hormone (AMH) [also called Müllerian inhibiting substance (MIS)] is a member of the transforming growth factor-beta family. AMH and its type II receptor (AMHR-II) are involved in the regression of the Müllerian ducts in the male embryo, and in gonadal functions in the adult. AMH is also known to be a marker of granulosa and Sertoli cell tumours. We selected a high-affinity monoclonal antibody, mAb 12G4, specific for human AMHR-II (hAMHR-II), by FACS analysis, Western blotting and immunohistochemical staining of a hAMHR-II-transfected CHO (Chinese hamster ovary) cell line, normal adult testicular tissue and granulosa cell tumours. Using peptide array screening, we identified the binding sequences of mAb 12G4 and AMH on the receptor. Identification of Asp53 and Ala55 as critical residues in the DRAQVEM minimal epitopic sequence of mAb 12G4 definitively accounted for the lack of cross-reactivity with the murine receptor, in which there is a glycine residue in place of an aspartic acid residue. In a structural model, the AMH-binding interface was mapped to the concave side of hAMHR-II, whereas the mAb 12G4-binding site was located on the convex side. mAb 12G4, the first mAb to be raised against hAMHR-II, therefore has unique properties that could make it a valuable tool for the immunotargeting of tumours expressing this receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224123 | PMC |
http://dx.doi.org/10.1042/BJ20031961 | DOI Listing |
Oncotarget
June 2017
IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII.
View Article and Find Full Text PDFMAbs
August 2015
a IRCM; Institut de Recherche en Cancérologie de Montpellier ; Montpellier ; France.
Ovarian cancer has the highest mortality rate among gynecologic malignancies. The monoclonal antibody 12G4 specifically recognizes the human Müllerian inhibiting substance type II receptor (MISRII) that is strongly expressed in human granulosa cell tumors (GCT) and in the majority of human epithelial ovarian cancers (EOC). To determine whether MISRII represents an attractive target for antibody-based tumor therapy, we first confirmed by immunohistochemistry with 12G4 its expression in all tested GCT samples (4/4) and all, but one, EOC human tissue specimens (13/14).
View Article and Find Full Text PDFMicrob Pathog
May 2004
Department of Microbiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MC 7758, San Antonio TX 78284-7758, USA.
Trichomonas vaginalis is a protozoan responsible for the number one, non-viral sexually transmitted disease. Surface proteins (AP65, AP51, AP33 and AP23) mediate adherence to vaginal epithelial cells (VECs). Iron increases growth of trichomonads and synthesis and surface placement of adhesins.
View Article and Find Full Text PDFBiochem J
May 2004
EMI 0227 INSERM/Université Montpellier I/CRLC Montpellier, Cancer Institute Val d'Aurelle-Paul Lamarque, 35 rue de la Croix Verte, 34298 Montpellier Cedex 5, France.
Anti-Müllerian hormone (AMH) [also called Müllerian inhibiting substance (MIS)] is a member of the transforming growth factor-beta family. AMH and its type II receptor (AMHR-II) are involved in the regression of the Müllerian ducts in the male embryo, and in gonadal functions in the adult. AMH is also known to be a marker of granulosa and Sertoli cell tumours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!