The regulation of cGMP levels is central to the normal process of phototransduction in both cone and rod photoreceptor cells. Two of the proteins involved in this process are the enzyme, retinal guanylate cyclase (retGC), and its activating protein (GCAP) through which activity is regulated via changes in cellular Ca2+ levels. Dominant cone-rod dystrophies arising from changes in retGC1 are essentially restricted to mutations in codon 838 and result in the replacement of a conserved arginine residue with either cysteine, histidine or serine. In all three cases, the effect of the substitution on the in vitro cyclase activity is a loss of Ca2+ sensitivity arising from an increased stability of the coiled-coil domain of the protein dimer and retention of cyclase activity. In contrast, mutations in the Ca2+-coordinating EF hands of GCAP1 result in dominant cone dystrophy; the consequences of these mutations is a reduced ability of the mutant protein to regulate retGC activity in response to changes in Ca2+ levels. Functionally therefore, the retGC2 and GCAP2 mutations are similar in reducing the feedback inhibition of Ca2+ on cyclase activity and thereby on cGMP levels in the photoreceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/0470092645.ch4DOI Listing

Publication Analysis

Top Keywords

cyclase activity
12
dominant cone
8
cone-rod dystrophies
8
cgmp levels
8
ca2+ levels
8
mutations
5
activity
5
cone cone-rod
4
dystrophies functional
4
functional analysis
4

Similar Publications

Background: Cerebral Amyloid Angiopathy (CAA), characterized by the presence of amyloid β (Aβ) deposits in cerebral blood vessels has been associated with cognitive impairment and Alzheimer's disease (AD). Vascular risk factors, such as type 2 diabetes (T2D), are known to affect vascular pathology and CAA-like depositions. Furthermore, Aβ deposition in blood vessels accompanied my inflammation especially gliosis, has been reported in the transgenic AD mouse models 5xFAD and APP that express human Aβ.

View Article and Find Full Text PDF

Background: Pituitary adenylate cyclase-activating polypeptide (PACAP) has been found to be involved in a wide range of motivated and affective behaviors. While the PACAP-38 isoform is more densely expressed than PACAP-27 in most of the brain, PACAP-27 is more highly expressed in the rodent paraventricular nucleus of the thalamus (PVT), where females also have greater expression than males. Notably, the role of PACAP-27 expression in cells of the PVT has not been explored.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.

View Article and Find Full Text PDF

Intratumoural CD8 CXCR5 follicular cytotoxic T cells have prognostic value and are associated with CD19 CD38 B cells and tertiary lymphoid structures in colorectal cancer.

Cancer Immunol Immunother

December 2024

Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Colorectal cancer (CRC) is the most common digestive cancer in the world. Microsatellite stability (MSS) and microsatellite instability (MSI-high) are important molecular subtypes of CRC closely related to tumor occurrence and progression and immunotherapy efficacy. The presence of CD8 CXCR5 follicular cytotoxic T (T) cells is strongly associated with autoimmune disease and CD8 effector function.

View Article and Find Full Text PDF

Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP.

Commun Biol

December 2024

Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.

Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!