AI Article Synopsis

  • Glucocorticoids reduce glucose uptake and insulin release, leading to diabetes development in mice with increased glucocorticoid sensitivity in beta-cells.
  • These mice exhibited hyperglycemia and impaired glucose tolerance without significant changes in beta-cell structure or increased cell death.
  • Findings suggest that the heightened presence of alpha(2)-adrenergic receptors in the islets contributes to inhibited insulin secretion, with the use of an alpha(2)-AR antagonist restoring insulin response in transgenic mouse islets.

Article Abstract

Glucocorticoids are diabetogenic hormones because they decrease glucose uptake, increase hepatic glucose production, and inhibit insulin release. To study the long-term effects of increased glucocorticoid sensitivity in beta-cells, we studied transgenic mice overexpressing the rat glucocorticoid receptor targeted to the beta-cells using the rat insulin I promoter. Here we report that these mice developed hyperglycemia both in the fed and the overnight-fasted states at 12-15 months of age. Progression from impaired glucose tolerance, previously observed in the same colony at the age of 3 months, to manifest diabetes was not associated with morphological changes or increased apoptosis in the beta-cells. Instead, our current results suggest that the development of diabetes is due to augmented inhibition of insulin secretion through alpha(2)-adrenergic receptors (alpha(2)-ARs). Thus, we found a significantly higher density of alpha(2)-ARs in the islets of transgenic mice compared with controls, based on binding studies with the alpha(2)-AR agonist UK 14304. Furthermore, incubation of islets with benextramine, a selective antagonist of the alpha(2)-AR, restored insulin secretion in response to glucose in isolated islets from transgenic mice, whereas it had no effect on control islets. These results indicate that the chronic enhancement of glucocorticoid signaling in pancreatic beta-cells results in hyperglycemia and impaired glucose tolerance. This effect may involve signaling pathways that participate in the regulation of insulin secretion via the alpha(2)-AR.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.53.2007.s51DOI Listing

Publication Analysis

Top Keywords

transgenic mice
16
insulin secretion
12
increased glucocorticoid
8
glucocorticoid sensitivity
8
pancreatic beta-cells
8
impaired glucose
8
glucose tolerance
8
islets transgenic
8
mice
5
beta-cells
5

Similar Publications

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.

View Article and Find Full Text PDF

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.

View Article and Find Full Text PDF

GBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology.

View Article and Find Full Text PDF

Unlabelled: The T cell receptor (TCR) repertoire of intestinal CD4+ T cells is enriched for specificity towards microbiome-encoded epitopes shared among many microbiome members, providing broad microbial reactivity from a limited pool of cells. These cells actively coordinate mutualistic host-microbiome interactions, yet many epitopes are shared between gut symbionts and closely related pathobionts and pathogens. Given the disparate impacts of these agents on host health, intestinal CD4+ T cells must maintain strain-level discriminatory power to ensure protective immunity while preventing inappropriate responses against symbionts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!