Ubiquitination regulates the stability and/or activity of numerous cellular proteins. The corollary is that de-ubiquitinating enzymes, which 'trim' polyubiquitin chains from specific substrate proteins, play key roles in controlling fundamental cellular activities. Ubiquitin is essential at several stages during the activation of NF-kappaB (nuclear factor kappaB), a central co-ordinator of inflammation and other immune processes. Ubiquitination is known to cause degradation of the inhibitory molecule IkappaBalpha (inhibitor of kappaB). In addition, activation of TRAF (tumour-necrosis-factor-receptor-associated factor) and IKKgamma (IkappaB kinase gamma)/NEMO (NF-kappaB essential modifier) signal adaptors relies on their modification with 'nonclassical' forms of polyubiquitin chains. Ubiquitin also plays a key role in determining cell fate by modulating the stability of numerous pro-apoptotic or anti-apoptotic proteins. The zinc-finger protein A20 has dual functions in inhibiting NF-kappaB activation and suppressing apoptosis. The molecular mechanisms of these anti-inflammatory and cytoprotective effects are unknown. Here we demonstrate that A20 is a de-ubiquitinating enzyme. It contains an N-terminal catalytic domain that belongs to the ovarian-tumour superfamily of cysteine proteases. A20 cleaved ubiquitin monomers from branched polyubiquitin chains linked through Lys48 or Lys63 and bound covalently to a thiol-group-reactive, ubiquitin-derived probe. Mutation of a conserved cysteine residue in the catalytic site (Cys103) abolished these activities. A20 did not have a global effect on ubiquitinated cellular proteins, which indicates that its activity is target-specific. The biological significance of the catalytic domain is unknown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224040PMC
http://dx.doi.org/10.1042/BJ20031377DOI Listing

Publication Analysis

Top Keywords

polyubiquitin chains
12
zinc-finger protein
8
protein a20
8
cellular proteins
8
catalytic domain
8
a20
5
a20 regulator
4
regulator inflammation
4
inflammation cell
4
cell survival
4

Similar Publications

Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.

View Article and Find Full Text PDF

The effectiveness of state-of-the-art cross-linking strategies and mass spectrometry (MS) detection was explored in an important biological context, namely, the ubiquitin-proteasome system, which is responsible for most of the regulated protein degradation in eukaryotic cells. The locations of possible binding sites on the 19S proteasome regulatory particle for Lys linked polyubiquitin chains were examined using cross-linking strategies and MS based detection by comparing two types of cross-linkers: a (bis)-sulfosuccinimidyl suberate (BS) and diethyl suberothioimidate (DEST). The well-established BS-based strategy produced 328 cross-linked peptides; however, no ubiquitin-19S cross-links were observed.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Macrocyclic Peptide-Based Dual-Sensor Platform for Linkage-Specific Visualization of Ubiquitin Chain Assembling in Live Cells.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.

View Article and Find Full Text PDF

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!